• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abs/polyamide-6 Blends, Their Short Glass Fiber Composites And Organoclay Based Nanocomposites: Processing And Characterization

Ozkoc, Guralp 01 February 2007 (has links) (PDF)
The objective of this study is to process and characterize the compatibilized blends of acrylonitrile-butadiene-styrene (ABS) and polyamide-6 (PA6) using olefin based reactive copolymers and subsequently to utilize this blend as a matrix material in short glass fiber (SGF) reinforced composites and organoclay based nanocomposites by applying melt processing technique. In this context, commercially available epoxydized and maleated olefinic copolymers, ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) and ethylene-n butyl acrylate-carbon monoxide-maleic anhydride (EnBACO-MAH) were used as compatibilizers at different ratios. Compatibilizing performance of these two olefinic polymers was investigated through blend morphologies, thermal and mechanical properties as a function of blend composition and compatibilizer loading level. Incorporation of compatibilizer resulted in a fine morphology with reduced dispersed particle size. At 5 % EnBACO-MAH, the toughness was observed to be the highest among the blends produced. SGF reinforced ABS and ABS/PA6 blends were prepared with twin screw extrusion. The effects of SGF concentration and extrusion process conditions on the fiber length distribution, mechanical properties and morphologies of the composites were examined. The most compatible organosilane type was designated from interfacial tension and short beam flexural tests, to promote adhesion of SGF to both ABS and PA6. Increasing amount of PA6 in the polymer matrix improved the strength, stiffness and also toughness of the composites. Effects of compatibilizer content and ABS/PA6 ratio on the morphology and mechanical properties of 30% SGF reinforced ABS/PA6 blends were investigated. The most striking result of the study was the improvement in the impact strength of the SGF/ABS/PA6 composite with the additions of compatibilizer. Melt intercalation method was applied to produce ABS/PA6 blends based organoclay nanocomposites. The effects of process conditions and material parameters on the morphology of blends, dispersibility of nanoparticles and mechanical properties were investigated. To improve mixing, the screws of the extruder were modified. Processing with co-rotation yielded finer blend morphology than processing with counter-rotation. Clays were selectively exfoliated in PA6 phase and agglomerated at the interface of ABS/PA6. High level of exfoliation was obtained with increasing PA6 content and with screw speed in co-rotation mode. Screw modification improved the dispersion of clay platelets in the matrix.
2

Experimental Evaluation and Simulations of Fiber Orientation in Injection Molding of Polymers Containing Short Glass Fibers

Velez-Garcia, Gregorio Manuel 22 May 2012 (has links)
Injection molded short fiber reinforced composites have generated commercial interest in the manufacturing of lightweight parts used in semi-structural applications. Predicting these materials’ fiber orientation with quantitative accuracy is crucial for technological advancement, but the task is difficult because of the effect of inter-particle interactions at high concentrations of fiber found in parts of commercial interest. A complete sample preparation procedure was developed to obtain optical micrographs with optimal definition of elliptical and non-elliptical footprint borders. Two novel aspects in this procedure were the use of tridimensional markers to identify specific locations for analysis and the use of controlled-etching to produce small shadows where fibers recede into the matrix. These images were used to measure fiber orientation with a customized image analysis tool. This tool contains several modifications that we introduced in the method of ellipses which allow us to determine tridimensional fiber orientation and to obtain measurements in regions with fast changes in orientation. The tool uses the location of the shadow to eliminate the ambiguity problem in orientation and characterizes non-elliptical footprints to obtain the orientation in small sampling areas. Cavitywise measurements in two thin center-gated disks showed the existence of an asymmetric profile of orientation at the gate and an orientation profile that washed out gradually at the entry region until disappearing at about 32 gap widths. This data was used to assess the prediction of cavitywise orientation using a delay model for fiber orientation with model parameters obtained from rheometrical experiments. Model predictions combining slip correction and experimentally determined orientation at the gate are in agreement with experimental data for the core layers near the end-of-fill region. Radialwise measurements of orientation at the shell, transition and core layer, and microtextural description of the advancing front are included in this dissertation. The analysis and assessment of the radial evolution of fiber orientation and advancing front based on comparing the experimental data with simulation results are under ongoing investigation. / Ph. D.
3

Intrinsic Self-Sensing of Pulsed Laser Ablation in Carbon Nanofiber-Modified Glass Fiber/Epoxy Laminates

Rajan Nitish Jain (10725372) 29 April 2021 (has links)
<div>Laser-to-composite interactions are becoming increasingly common in diverse applications such as diagnostics, fabrication and machining, and weapons systems. Lasers are capable of not only performing non-contact diagnostics, but also inducing seemingly imperceptible structural damage to materials. In safety-critical venues like aerospace, automotive, and civil infrastructure where composites are playing an increasingly prominent role, it is desirable to have means of sensing laser exposure on a composite material. Self-sensing materials may be a powerful method of addressing this need. Herein, we present an exploratory study on the potential of using changes in electrical measurements as a way of detecting laser exposure to a carbon nanofiber (CNF)-modified glass fiber/epoxy laminate. CNFs were dispersed in liquid epoxy resin prior to laminate fabrication via hand layup. The dispersed CNFs form a three-dimensional conductive network which allows for electrical measurements to be taken from the traditionally insulating glass fiber/epoxy material system. It is expected that damage to the network will disrupt the electrical pathways, thereby causing the material to exhibit slightly higher resistance. To test laser sensing capabilities, a resistance baseline of the CNF-modified glass fiber/epoxy specimens was first established before laser exposure. These specimens were then exposed to an infra-red laser operating at 1064 nm, 35 kHz, and pulse duration of 8 ns. The specimens were irradiated for a total of 20 seconds (4 exposures each at 5 seconds). The resistances of the specimens were then measured again post-ablation. In this study, it was found that for 1.0 wt.% CNF by weight the average resistance increased by about 18 percent. However, this values varied for specimens with different weight fractions. This established that the laser was indeed causing damage to the specimen sufficient to evoke a change in electrical properties. In order to expand on this result, electrical impedance tomography (EIT) was employed for localization of laser exposures of 1, 3, and 5 seconds on a larger specimen, a 3.25” square plate. EIT was used to measure the changes in conductivity after each exposure. EIT was not only successful in detecting damage that was virtually imperceptible to the human-eye, but it also accurately localized the exposure sites. The post-ablation conductivity of the exposure sites decreased in a manner that was comparable to the resistance increase obtained during prior testing. Based on this preliminary study, this research could lead to the development of a real-time exposure detection and tracking system for the measurement, fabrication, and defense industries.</div>

Page generated in 0.0891 seconds