• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catechyl-lignin tissues in Vanilla orchid and Candlenut: structure/property studies

Ristanti, Eky Yenita 24 May 2023 (has links)
In 2012, a new type of lignin, catechyl (C)-lignin was found in the seed coat of vanilla orchid (Vanilla planifolia) and Melocactus cacti, and later in the nutshell of Aleurites moluccana (candlenut). This caffeyl alcohol homopolymer is the exclusive lignin in vanilla seed coat but separated in time and/or location with guaiacyl (G)-lignin in candlenut. Unlike conventional guaiacyl/syringyl (G/S-lignins) with alkyl-aryl ether linkages, intermonomer linkages in C-lignin are connected by benzodioxane linkages which are stiffer than alkyl-aryl ether linkages. C-lignin is unusually stable against acid-catalyzed cleavage. Tissues with C-lignin are expected to exhibit high glass transition temperature (Tg) compared to tissues with G/S/H-lignin. C-lignin also probably shows high crystallinity due to its highly linear-homopolymer structure. The ability of some seed coats/nutshells in angiosperms to synthesize a new type of lignin is another level of lignin evolution. However, the role of C-lignin related to the function of the seed coat is unclear while it exhibits different behaviors to the regular G/S/H-lignin. These points motivated us to conduct cell-wall structure/property studies in the context of plant evolution, using microscopy, X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). Light and electron microscopes were used to identify cell's size and type of intact and macerated vanilla seed coat and candlenut shell. Vanilla seeds are tiny, sized approximately 300μm and the surface is covered with dark-colored seed coat. Candlenut is slightly smaller than walnut, with uneven, hard, dark brown shell covering the nut. Microscopy observations indicated that both seed coat and nutshell are dominated by highly lignified cells, known as sclereids. The types of sclereids in vanilla seed coat and candlenut shell are different; vanilla seed coat has ostoesclereid-type cells, while candlenut shell has macrosclereid-type cells. XRD was used to study tissue with C-lignin crystallinity by comparing diffractograms of vanilla seed coat and candlenut shell to Southern Yellow Pine wood diffractograms. The Southern Yellow Pine wood diffractogram corresponds to a typical native cellulose in higher plants, that is cellulose I allomorph. Diffractogram XRD analysis on vanilla seed coat and candlenut shell shows similarities to Southern Yellow Pine native cellulose, suggesting that cellulose is the contributor for crystallinity in seed coat and nutshell, and this also indicated that tissues with C-lignin is not crystalline. Crystallinities of vanilla seed coat and candlenut shell determined using peak deconvolution methods were about half of Southern Yellow Pine crystallinity. DMA was used to measure Tg in vanilla seed coat and candlenut shell. Measurements were conducted in solvent-submersion mode using organic plasticizers to reduce the Tg to non-damaging temperatures. DMA measurement of vanilla seed coat and candlenut shell is challenging due to specimen size and shape. Specimen preparation for DMA measurement included seed coat purification for vanilla and cutting/milling for candlenut shell followed by specimen saturation in plasticizers. Compressive-torsion DMA was used to allow tiny specimens gripping. Vanilla seed coats exhibited higher glass transition temperature compared to wood, while candlenut shells exhibited various Tgs depending on specimen type/size. / Doctor of Philosophy / Lignin is a complex organic material that constructs higher plant cell walls. Lignin provides stiffness and strength and is the landmark of plant evolution to terrestrial life. Typically, lignin in hardwood/softwood has guaicayl and/syringyl (G/S) units derived from coniferyl/sinapyl alcohols. ln 2012, a new type of lignin, catechyl (C)-lignin, was found in the seed coat of vanilla orchid (Vanilla planifolia) and Melocactus cacti, and later in the nutshell of Aleurites moluccana (candlenut). C-lignin is a caffeyl alcohol homopolymer and is exclusive in vanilla seed coat but coexists with guaiacyl (G)-lignin in candlenut shells. This new type of lignin exhibits different behavior than G/S-lignin. C-lignin is unusually stable against acid-catalyzed hydrolysis. Intermonomer linkage in C-lignin is stiffer than G/S lignin(s); it is likely to have higher glass transition temperature (Tg) than normal lignin. Due to its linearity, tissue with C-lignin is also expected to be highly crystalline. C-lignin's roles are not well known and therefore, these are merit for structure/property studies in the context of plant evolution as bio-inspired new materials. Microscopy, X-ray diffraction (XRD), and dynamic mechanical analysis (DMA) were used to study vanilla seed coat and candlenut shell morphology, crystallinity, and glass transition temperatures (Tg), respectively. It was observed that the two tissues have different types of sclereids, but this is not associated with why vanilla seed coats exhibit only C-lignin while candlenut shells have both C /G-lignins. XRD scans revealed that C-lignin is not crystalline due to similarity of their diffractograms to those of wood. DMA measurements revealed that vanilla seed coat tissues exhibit higher Tg than tissue with G/S lignin as expected, while the Tg candlenut shells varied among specimen type and particle sizes.
2

Factors influencing the properties of epoxy resins for composite applications

Thitipoomdeja, Somkiat January 1995 (has links)
The aim of the work reported here was to determine the influence of an amine curing agent, and postcure cycle on the mechanical and thermal properties of diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The results of this initial study were then used as the basis for selecting material to obtain optimum toughness in epoxy/glass fibre systems. These basic materials were further used to make comparisons with the properties of modified resin systems which contained commercial elastomers. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Thermal Analysis (DMTA), Fourier Transform Infrared Spectroscopy (FTIR), flexural and interlaminar shear tests, Instrumented Falling Weight Impact (IFWI), visual observation, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were all used to investigate various properties and the structures which gave rise to them. The properties of cured products were found to be affected by the amounts of curing agent, curing times and temperatures, and the structure of the elastomers. Not surprisingly the maximum thermal and mechanical properties tended to be found in the stoichiometric (standard) mix systems. However, postcuring at higher than room temperature, which was used as the basic curing temperature, led to more conversion. This effect improved the thermal and mechanical properties of both the unmodified and modified resin systems. The maximum flexural strength of 104 MPa of the unreinforced resins was found in the stoichiometric mix ratio after postcure at 150°C for 4 hr. However, the maximum flexural modulus and glass transition temperature (Tg) were found after postcuring at the same temperature for 48 hr. This was believed to be due to increased crosslinking, but unfortunately the longer curing time led to degradation of the resins. In the systems modified with -20 phr of polyetheramine elastomers, the one modified with the lowest molecular weight (2000) was found to have the highest flexural strength (85.8 MPa) and modulus (2.5 GPa). The impact properties of all the composites with modified resin matrices were found to be higher than the unmodified resin matrix composites. The best impact properties were, however, obtained with the elastomer modifier with a molecular weight of 4000. The impact energy at maximum force increased from 11.9 to 16.4 J, and energy at failure increased from 18.7 to 21.6 J. This increase in impact properties was due to the increase in areas of phase separated elastomer particles over similar systems with lower molecular weight modifier.
3

Molecular modeling of graphite/vinyl ester nanocomposite properties and damage evolution within a cured thermoset vinyl ester resin

Nacif El Alaoui, Reda 25 November 2020 (has links)
The non-reactive Dreiding and the reactive ReaxFF atomic potentials were applied within a family of atom molecular dynamics (MD) simulations to investigate and understand interfacial adhesion in graphene/vinyl ester composites. First, a liquid vinyl ester (VE) resin was equilibrated in the presence of graphene surfaces and then cured, resulting in a gradient in the monomer distribution as a function of distance from the surfaces. Then the chemically realistic relative reactivity volume (RRV) curing algorithm was applied that mimics the known radical addition regiochemistry and monomer reactivity ratios of the VE monomers during three-dimensional chain-growth polymerization. Surface adhesion between the cured VE resin and the graphene reinforcement surfaces was obtained at a series of VE resin “crosslink densities.” Both pristine and oxidized graphite sheets were employed separately in these simulations using a Dreiding potential. The pristine sheets serve as a surrogate for pure carbon fibers while oxidizing the outer graphene sheets serve as a model for oxidized carbon fibers. Hence, the effects of local monomer distribution and temperature on the interphase region formation and surface adhesion can be investigated. Surface adhesion was studied at various curing conversions and as a function of temperature. Uniaxial loading simulations were performed at different curing conversions for both models to predict the composites’ modulus of elasticity, Poisson’s ratio, and yield strength. The same analysis was performed for the neat cured matrix. The glass transition temperature (Tg) for the homogenized composite and neat VE matrix was determined at different degrees of curing. Subsequent MD simulations were performed to predict structural damage evolution and fracture in the neat VE matrix. The ReaxFF potential was used to quantify irreversible damage due to bond breakage in the neat VE matrix for different degrees of cure, stress states, temperatures, and strain rates. The predicted damage mechanisms in the bulk VE thermosetting polymer were directly compared to those for an amorphous polyethylene (PE) thermoplastic polymer.
4

Thermodynamic and glass transition behavior in CO<sub>2</sub>-Polymer systems emphasizing the surface region

Liu, Dehua 21 September 2006 (has links)
No description available.
5

Příprava akrylátových kopolymerů emulzní polymerací / Preparation of acrylic copolymers via emulsion polymerization

Arvai, Tomáš January 2013 (has links)
The diploma thesis deals with preparation of acrylic copolymers via emulsion polymerization technique. Two sets of copolymer samples were prepared within this thesis, n BA/MMA and 2-EHA/MMA copolymers. n-BA/MMA copolymer sample was used for investigation of effect of surfactant concentration as well as effect of addition of acrylic acid to the feed composition. During all the copolymerizations, conversion was observed via solids content evaluation as the reaction progressed. Copolymerization was lead under inert atmosphere at continuous stirring and 80 °C for 4 hours. Glass transition temperature of samples was determined with DSC and Vicat softening point was measured as well. Data acquired from measurements were compared with values calculated with Fox equation which was used for modelling molar ratio of monomers in initial feed.
6

Confinement, Coarsening And Nonequilibrium Fluctuations In Glassy And Yielding Systems

Nandi, Saroj Kumar 07 1900 (has links) (PDF)
One of the most important and interesting unsolved problems of science is the nature of glassy dynamics and the glass transition. It is quite an old problem, and starting from the early20th century there have been many efforts towards a sound understanding of the phenomenon. As a result, there are a number of theories in the field, which do not entirely contradict each other, but between which the connection is not entirely clear. In the last couple of decades or so, there has been significant progress and currently we do understand many facets of the problem. But a unified theoretical framework for the varied phenomena associated with glassiness is still lacking. Mode-coupling theory, an extreaordinarily popular approach, came from Götze and co-workers in the early eighties. The theory was originally developed to describe the two¬ step decay of the time-dependent correlation functions in a glassy fluid observed near the glass transition temperature(Tg). The theory went beyond that and made a number of quantitative predictions that can be tested in experiments and simulations. However, one of the drawback of the theory is its prediction of a strong ergodic to non-ergodic transition at a temperature TMCT; no such transition exists in real systems at the temperatures at which MCT predicts it. Consequently, the predictions of the theory like the power-law divergences of the transport quantities (e.g., viscosity and relaxation time) fail at low enough temperature and the theory can not be used below TMCT. It is well understood now that MCT is some sort of a mean-field theory of the real phenomenon, and in real systems the transition predicted by MCT is at best avoided due to finite dimensions and activated processes, neither of which is taken into account in standard MCT. Despite its draw backs, even the most severe critic of the theory will be impressed by its power and the predictions in a regime where it works. Even though the non-ergodic transition predicted by the theory is averted, the MCT mechanism for the increase of viscosity and relaxation time is actually at work in real systems. The status of MCT for glass transition is ,perhaps, similar to the Curie-Weiss theory of magnetic phase transition and it will require hard work and perhaps a conceptual breakthrough to go beyond this mean-field picture. Discussion of such a theoretical framework and its possible directions are, however, beyond the scope of this thesis. In the first part of this work, we have extended the mode coupling theory to three important physical situations: the properties of fluids under strong confinement, a sheared fluid and for the growth kinetics of glassy domains. In the second part, we have studied a different class of non equilibrium phenomenon in arrested systems, the fluctuation relations for yielding. In the first chapter, we talk about some general phenomenology of the glass transition problem and a few important concepts in the field. Then we briefly discuss the physical problems to be addressed in detail later on in the thesis followed by a brief account of some of the important existing theories in the field. This list is by no means exhaustive but is intended to give a general idea of the theoretical status of the problem. We conclude this chapter with a detailed derivation of MCT and its successes and failures. This derivation is supposed to serve as a reference for the details of the calculations in later chapters. The second chapter deals with a simple theory of an important problem of lubrication and dynamics of fluid at nanoscopic scales. When a fluid is confined between two smooth surfaces down to a few molecular layers and an normal force is applied on the upper surface, it is found that one layer of fluid gets squeezed out of the geometry at a time. The theory to explain this phenomenon came from Persson and Tosatti. However, due to a mathematical error, the in-plane viscosity term played no role in the original calculation. We re-do this calculation and show that the theory is actually more powerful than was suggested originally by its proponents. In the third chapter, we work out a detailed theory for the dynamics of fluid under strong planar confinement. This theory is based on mode-coupling theory. The walls in our theory enter in terms of an external potential that impose a static inhomogeneous background density. The interaction of the density fluctuation with this static background density makes the fluid sluggish. The theory explains how the fluid under strong confinement can undergo a glassy transition at a higher temperature or lower density than the corresponding bulk fluid as has been found in experiments and simulations. One of the interesting findings of the theory is the three-step relaxation that has also been found in a variety of other cases. The fourth chapter consists of a mode-coupling calculation of a sheared fluid through the microscopic approach first suggested by Zaccarelli et al[J. Phys.: Condens. Matter 14,2413(2002)]. The various assumptions of the theory are quite clear in this approach. The main aim of this calculation is to understand how FDR enters with in the theory. The only new result is the modified form of Yvon-Born-Green(YBG) equations for a sheared fluid. Then we extend the theory for the case of a confined fluid under steady shear and show that a confined fluid will show shear thinning at a much lower shear rate than the bulk fluid. When a system is quenched past a phase transition point, phase ordering kinetics begins. The properties of the system show “aging” with time, and the characteristic length scale of the quenched system grows as one waits. The analogous question for glasses has also been asked in the contexts of various numerical and experimental works. We formulate a theory in chapter five for rationalizing these findings. We find that MCT, surprisingly, offers an answer to this key question in glass forming liquids. The challenge of this theory is that care must be taken in using some equilibrium relations like the fluctuation-dissipation relation(FDR), which is one of the key steps in most of the derivations of MCT. We find that the qualitative, and some times even the quantitative, picture is in agreement with numerical findings. A similar calculation for the spin-glass case also predicts increase of the correlation volume with the waiting time, but with a smaller exponent than the structural glass case. We extended this theory to the case of shear and find that shear cuts off the growth of the length-scale of glassy correlations when the waiting time becomes of the order of the inverse shear rate. For the case of sheared fluid, if we take the limit of the infinite waiting time, the system will reach a steady state. Then, the resulting theory will describe a fluid in sheared steady state. The advantage of this theory over the existing mode-coupling theories for a sheared fluid is that FDR has not been used in any stage. This is an important development since the sheared steady state is driven away from equilibrium. Interestingly, the theory captures a suitably-defined effective temperature and gives results that are consistent with numerical experiments of steady state fluids(both glass and granular materials). We give the details of a theoretical model for jamming and large deviations in micellar gel in the sixth chapter. This theory is motivated by experiments. Through the main ingredient of the attachment-detachment kinetics and some simple rules for the dynamics, the theory is capable of capturing all the experimental findings. The novel prediction of this work is that in a certain parameter range, the fluctuation relations may be violated although the large deviation function exists. We argue that a wider class of physical systems can be understood in terms of the present theory. In the final chapter, we summarize the problems studied in this thesis and point out some future directions.
7

Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations : effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysis

Isreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process parameters are generally selected using a trial-and-error approach. However, coating problems and defects, especially those associated with aqueous coating systems, indicate the necessity of embracing a quality-by-design approach to identify the optimum coating parameters. In this study, the feasibility of using thermal and rheological measurements to help evaluate and design novel coating formulations has been investigated. Hydroxypropyl methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was used as the film forming polymer. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery (PPSR) were used to evaluate the effect of different plasticisers on the performance of HPMCAS. The results illustrate that, for identical formulations, the DSC and DMA methods yielded up to 40% differences in glass transition temperature (Tg) values. Moreover, Tg measured using loss modulus signals were always 20-30 oC less than those measured using tan delta results in DMA testing. Absolute and relative Tg values can significantly vary depending on the geometry of the samples, clamp size, temperature ramping rate and the frequency of the oscillations. Complex viscosity data for different formulations demonstrated a variable shear thinning behaviour and a Tg independent ranking. It is, therefore, insufficient to rely purely on Tg values to determine the relative performance of additives. In addition, complex viscosity results, obtained using both the DMA and PPSR techniques at similar temperatures, are shown to be comparable. The results from both techniques were therefore used to produce continuous master curves for the HPMCAS formulations. Additionally, step strain tests showed that HPMCAS chains do not fully III disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.
8

Thermal and rheological approaches for the systematic enhancement of pharmaceutical polymeric coating formulations. Effects of additives on glass transition temperature, dynamic mechanical properties and coating performance in aqueous and solvent-free coating process using DSC, shear rheometry, dissolution, light profilometry and dynamic mechanical analysis.

Isreb, Mohammad January 2011 (has links)
Additives, incorporated in film coating formulations, and their process parameters are generally selected using a trial-and-error approach. However, coating problems and defects, especially those associated with aqueous coating systems, indicate the necessity of embracing a quality-by-design approach to identify the optimum coating parameters. In this study, the feasibility of using thermal and rheological measurements to help evaluate and design novel coating formulations has been investigated. Hydroxypropyl methylcellulose acetate succinate (HPMCAS), an enteric coating polymer, was used as the film forming polymer. Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and Parallel Plate Shear Rheometery (PPSR) were used to evaluate the effect of different plasticisers on the performance of HPMCAS. The results illustrate that, for identical formulations, the DSC and DMA methods yielded up to 40% differences in glass transition temperature (Tg) values. Moreover, Tg measured using loss modulus signals were always 20-30 oC less than those measured using tan delta results in DMA testing. Absolute and relative Tg values can significantly vary depending on the geometry of the samples, clamp size, temperature ramping rate and the frequency of the oscillations. Complex viscosity data for different formulations demonstrated a variable shear thinning behaviour and a Tg independent ranking. It is, therefore, insufficient to rely purely on Tg values to determine the relative performance of additives. In addition, complex viscosity results, obtained using both the DMA and PPSR techniques at similar temperatures, are shown to be comparable. The results from both techniques were therefore used to produce continuous master curves for the HPMCAS formulations. Additionally, step strain tests showed that HPMCAS chains do not fully III disentangle after 105 seconds as predicted by the Maxwell model. Finally, in situ aqueous-based coating experiments proved that mixtures of triethyl acetyl citrate and acetylated monoglyceride (TEAC/AMG), even without cooling of the suspension, do not cause blocking of the spray nozzle whereas triethyl citrate (TEC) based formulae did. TEAC (alone or in a combination with AMG) exhibits superior wettability to HPMCAS than TEC/AMG formulations and can be used to enhance the efficiency and film quality of the dry coating process.

Page generated in 0.1526 seconds