• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Breitbandige dielektrische Spektroskopie zur Untersuchung der molekularen Dynamik von Nanometer-dünnen Polymerschichten

Treß, Martin 21 November 2014 (has links)
Mit dieser Arbeit ist weltweit zum ersten Mal die molekulare Dynamik von vereinzelten,d.h. einander nicht berührenden Polymerketten experimentell bestimmt worden. Die Grundlagen dafür sind einerseits die breitbandige dielektrische Spektroskopie mit ihrer außerordentlich hohen experimentellen Empfindlichkeit und andererseits die Weiterentwicklung einer speziellen Probenanordnung, bei der hochleitfähige Silizium-Elektroden durch elektrisch isolierende Siliziumdioxid-Nanostrukturen in einem vordefinierten Abstand gehalten werden und so den Probenkondensator bilden. Im Rahmen dieser Arbeit wurde die Höhe der Nanostrukturen (und damit des Elektrodenabstands) auf nur 35 nm reduziert. Damit gelang der Nachweis, dass selbst vereinzelte kondensierte Polymer-Knäuel - im Rahmen der Messgenauigkeit - dieselbe Segmentdynamik (bzw. denselben dynamischen Glasübergang), gemessen in ihrer mittleren Relaxationsrate, wie die makroskopische Schmelze („bulk“) aufweisen. Nur ein kleiner Anteil der Segmente zeigt eine langsamere Dynamik, was auf attraktive Wechselwirkungen mit dem Substrat zurückzuführen ist, wie komplementäre Untersuchungen mittels Infrarot-Spektroskopie zeigen. Zudem bieten diese Experimente die Möglichkeit, nach der dielektrischen Messung die mit Nanostrukturen versehene obere Elektrode zu entfernen und die Verteilung der vereinzelten Polymerketten, deren Oberflächenprofile und Volumen mit dem Rasterkraftmikroskop zu bestimmen. Erst damit gelingt der Nachweis, dass die Polymer-Knäuel im Mittel aus einer einzelnen Kette bestehen. Die Kombination dieser drei unabhängigen Messmethoden liefert ein schlüssiges und detailliertes Bild, gekennzeichnet dadurch, dass attraktive Oberflächenwechselwirkungen die Glasdynamik nur über ca. 0,5nm direkt beeinflussen. In einem zweiten Teil trägt die Arbeit mit der Untersuchung dünner Polymerschichten im Nanometer-Bereich zu einer international geführten, kontroversen Diskussion um die Frage, ob sich im Falle solcher räumlichen Begrenzungen der dynamische und kalorimetrische Glasübergang ändern, bei. Dabei zeigt mit den präsentierten dielektrischen und ellipsometrischen Messungen eine Kombination aus einer Methode, die im Gleichgewichtszustand misst und einer, die den Übergang in den Nichtgleichgewichtszustand bestimmt, dass sich sowohl Polystyrol-Schichten verschiedener Molekulargewichte bis zu einer Dicke von nur 5 nm als auch Polymethylmethacrylat-Schichten auf unterschiedlichen (hydrophilen und hydrophoben) Substraten bis zu einer Dicke von 10 nm weder in ihrem dynamischen noch ihrem kalorimetrischen Glasübergang von der makroskopischen Schmelze unterscheiden.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis V 1 Einleitung 1 2 Theoretische Grundlagen 5 2.1 Glasübergang und Glasdynamik . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Kristallisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Der kalorimetrische Glasübergang . . . . . . . . . . . . . . . . . . . 7 2.1.3 Der dynamische Glasübergang . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 Theoretische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Polymere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Molekulare Struktur . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Molekulare Dynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 „Confinement effects“ - der Einfluss räumlicher Begrenzung . . . . . 19 2.3 Wechselwirkung von elektromagnetischen Feldern mit Materie . . . . . . . . 22 2.3.1 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Elektrostatik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.3 Dielektrische Relaxation und Retardation . . . . . . . . . . . . . . . 26 3 Material und Methoden 39 3.1 Experimentelle Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Dielektrische Spektroskopie . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Rasterkraftmikroskopie . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.3 Ergänzende Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Datenauswertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Analyse der dielektrischen Messungen . . . . . . . . . . . . . . . . . 52 3.2.2 Analyse der Rasterkraftmikroskopaufnahmen . . . . . . . . . . . . . 61 3.2.3 Verfahren zur Auswertung der ergänzenden Methoden . . . . . . . . 74 3.3 Probenmaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4 Probenpräparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.1 Präparation dünner Polymerfilme und vereinzelter Polymerknäuel . . 84 3.4.2 Probenkondensatoren mit nanostrukturierten Elektroden . . . . . . . 90 3.4.3 Aufdampfen von Elektroden . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.4 Tempern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.5 Besonderheiten der Präparation für die ergänzenden Methoden . . . 96 3.5 Reproduzierbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.5.1 Unerwünschte Veränderungen der Probe und Gegenmaßnahmen . . 98 3.5.2 Prüfung der Probenstabilität . . . . . . . . . . . . . . . . . . . . . . . 101 3.5.3 Partikelkontamination . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4 Ergebnisse und Diskussion 105 4.1 Modellierung der dielektrischen Spektren . . . . . . . . . . . . . . . . . . . 105 4.1.1 Probenaufbau und Ersatzschaltbilder . . . . . . . . . . . . . . . . . . 106 4.1.2 Vergleich modellierter und gemessener Spektren . . . . . . . . . . . 111 4.1.3 Modell eines Polymer-Knäuels im Plattenkondensator . . . . . . . . . 119 4.1.4 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Dünne Polymerschichten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2.1 Polystyrol-Schichten verschiedener Molekulargewichte . . . . . . . . 128 4.2.2 Polymethylmethacrylat-Schichten auf unterschiedlichen Substraten . 135 4.2.3 Literaturdiskussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.2.4 Die präsentierten Ergebnisse im Kontext der Literatur . . . . . . . . . 155 4.3 Vereinzelte Polymer-Knäuel . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4.3.1 Charakterisierung der Oberfläche . . . . . . . . . . . . . . . . . . . . 158 4.3.2 Molekulare Dynamik . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 4.3.3 Wechselwirkungen mit der Oberfläche . . . . . . . . . . . . . . . . . 170 4.3.4 Interpretation - das molekulare Bild . . . . . . . . . . . . . . . . . . 174 5 Zusammenfassung 177 A Übersicht der Messungen und Experimentatoren 181 Literaturverzeichnis 182 Publikationsliste 205 Danksagung 209 Lebenslauf 211 Selbstständigkeitserklärung 213
12

Multikomponentní plazmové polymery s prostorově řízenými vlastnostmi / Multicomponent plasma polymers with spatially controlled properties

Pleskunov, Pavel January 2020 (has links)
Title: Multicomponent plasma polymers with spatially controlled properties Author: MSc. Pavel Pleskunov Department / Institute: Department of Macromolecular Physics/Charles University Supervisor of the doctoral thesis: Prof. Ing. Andrey Shukurov, PhD, Department of Macromolecular Physics / Charles University Abstract: Mixing of two (or more) polymers often leads to phase separation and to the formation of nanoscale architecture, which can be highly attractive in various applications including controllable drug delivery, fabrication of separation and solid electrolyte membranes, gas storage, etc. Different wet-chemistry techniques already exist to produce nanophase-separated polymers; however, capturing the resultant polymeric structure in a predictable manner remains a challenging task. In this thesis, a low-temperature plasma-based strategy is investigated for the production of multicomponent thin films of plasma polymers with spatially discriminated nanoscale domains. Gas aggregation cluster source is used for the fabrication of nanoparticles of plasma polymerized acrylic acid, whereas Plasma-Assisted Vapor Phase Deposition is used for the deposition of thin films of poly(ethylene oxide) plasma polymer. Embedding of nanoparticles into matrices of thermodynamically incompatible plasma polymer as well as...
13

Slow Dynamics In Soft Condensed Matter : From Supercooled Liquids To Thermotropic Liquid Crystals

Chakrabarti, Dwaipayan 06 1900 (has links)
This thesis, which contains fourteen chapters in two parts, presents theoretical and computer simulation studies of dynamics in supercooled liquids and thermotropic liquid crystals. These two apparently diverse physical systems are unified by a startling similarity in their complex slow dynamics. Part I consists of six chapters on supercooled liquids while Part II comprises seven chapters on thermotropic liquid crystals. The fourteenth chapter provides a concluding note. Part I starts with an introduction to supercooled liquids given in chapter 1. This chapter discusses basic features of supercooled liquids and the glass transition and portrays some of the theoretical frameworks and formalisms that are widely recognized to have contributed to our present understanding. Chapter 2 introduces a new model of binary mixture in order to study dynamics across the supercooled regime. The system consists of an equimolar mixture of the Lennard-Jones spheres and the Gay-Berne ellipsoids of revolution, and thus one of its components has orientational degrees of freedom (ODOF). A decoupling between trans-lational diffusion and rotational diffusion is found to occur below a temperature where the second rank orientational correlation time starts showing a steady deviation from the Arrhenius temperature behavior. At low temperatures, the optical Kerr effect (OKE) signal derived from the system shows a short-to-intermediate time power law decay with a very weak dependence on temperature, if at all, of the power law exponent as has been observed experimentally. At the lowest temperature investigated, jump motion is found to occur in both the translational and orientational degrees of freedom. Chapter 3 studies how the binary mixture, introduced in the previous chapter, explores its underlying potential energy landscape. The study reveals correlations between the decoupling phenomena, observed almost universally in supercooled molecular liquids, and the manner of exploration of the energy landscape of the system. A significant deviation from the Debye model of rotational diffusion in the dynamics of ODOF is found to begin at a temperature at which the average inherent structure energy of the system starts falling as the temperature decreases. Further, the coupling between rotational diffusion and translational diffusion breaks down at a still lower temperature, where a change occurs in the temperature dependence of the average inherent structure energy. Chapters 4-6 describe analytical and numerical approaches to solve kinetic models of glassy dynamics for various observables. The β process is modeled as a thermally activated event in a two-level system and the a process is described as a β relaxation mediated cooperative transition in a double-well. The model resembles a landscape picture, conceived by Stillinger [Science 267, 1935 (1995)], where the a process is assumed to involve a concerted series of the β processes, the latter being identified as elementary relaxations involving transitions between contiguous basins. For suitable choice of parameter values, the model could reproduce many of the experimentally observed features of anomalous heat capacity behavior during a temperature cycle through the glass transition as described in chapter 4. The overshoot of the heat capacity during the heating scan that marks the glass transition is found to be caused by a delayed energy relaxation. Chapter 5 shows that the model can also predict a frequency dependent heat capacity that reflects the two-step relaxation behavior. The high-frequency peak in the heat capacity spectra appears with considerably larger amplitude than the low-frequency peak, the latter being due to the a relaxation. The model, when simplified with a modified description of the a process that involves an irreversible escape from a metabasin, can be solved analytically for the relaxation time. This version of the model captures salient features of the structural relaxation in glassy systems as described in chapter 6. In Part II, thermotropic liquid crystals are studied in molecular dynamics simulations using primarily the family of the Gay-Berne model systems. To start with, chapter 7 provides a brief introduction to thermotropic liquid crystals, especially from the perspective of the issues discussed in the following chapters. This chapter ends up with a detail description of the family of the Gay-Berne models. Chapter 8 demonstrates that a model system for calamitic liquid crystal (comprising rod-like molecules) could capture the short-to-intermediate time power law decay in the OKE signal near the isotropic-nematic (I-N) phase transition as observed experimentally. The single-particle second rank orientational time correlation function (OTCF) for the model liquid crystalline system is also found to sustain a power law decay regime in the isotropic phase near the I-N transition. On transit across the I-N phase boundary, two power law decay regimes, separated by a plateau, emerge giving rise to a step-like feature in the single-particle second rank OTCF. When the time evolution of the rotational non-Gaussian parameter is monitored as a diagnostic of spatially heterogeneous dynamics, a dominant peak is found to appear following a shoulder at short times, signaling the growth of pseudonematic domains. These observations are compared with those relevant ones obtained for the supercooled binary mixture, as discussed in chapter 2, in the spirit of the analogy suggested recently by Fayer and coworkers [J. Chem. Phys. 118, 9303 (2003)]. In chapter 9, orientational dynamics across the I-N transition are investigated in a variety of model systems of thermotropic liquid crystals. A model discotic system that consists of disc-like molecules as well as a lattice system have been considered in the quest of a universal short-to-intermediate time power law decay in orientational relaxation, if any. A surprisingly general power law decay at short to intermediate times in orientational relaxation is observed in all these systems. While the power law decay of the OKE signal has been recently observed experimentally in calamitic systems near the I-N phase boundary and in the nematic phase by Fayer and coworkers [J. Chem. Phys. 116, 6339 (2002), J. Phys. Chem. B 109, 6514 (2005)], the prediction for the discotic system can be tested in experiments. Chapter 10 presents the energy landscape view of phase transitions and slow dynamics in thermotropic liquid crystals by determining the inherent structures of a family of one-component Gay-Berne model systems. This study throws light on the interplay between the orientational order and the translational order in the mesophases the systems exhibit. The onset of the growth of the orientational order in the parent phase is found to induce a translational order, resulting in a smectic-like layer in the underlying inherent structures. The inherent structures, surprisingly, never seem to sustain orientational order alone if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. The Arrhenius temperature dependence of the orientational relaxation time breaks down near the I-N transition and this breakdown is found to occur at a temperature below which the system explores increasingly deeper potential energy minima. There exists a remarkable similarity in the manner of exploration of the potential energy landscape between the Gay-Berne systems studied here and the well known Kob-Andersen binary mixture reported previously [Nature, 393, 554 (1998)]. In search of a dynamical signature of the coupling between orientational order and translational order, anisotropic translational diffusion in the nematic phase has been investigated in the Gay-Berne model systems as described in chapter 11. The translational diffusion coefficient parallel to the director D// is found to first increase and then decrease as the temperature drops through the nematic phase. This reversal occurs where the smectic order parameter of the underlying inherent structures becomes significant for the first time. The non-monotonic temperature behavior of D// can thus be viewed from an energy landscape analysis as a dynamical signature of the coupling between orientational and translational order at the microscopic level. Such a view is likely to form the foundation of a theoretical framework to explain the anisotropic translation diffusion. Chapter 12 investigates the validity of the Debye model of rotational diffusion near the I-N phase boundary with a molecular dynamics simulation study of a Gay-Berne model system for calamitic liquid crystals. The Debye model is found to break down near the I-N phase transition. The breakdown, unlike the one observed in supercooled molecular liquids where a jump diffusion model is often invoked, is attributed to the growth of orientational pair correlation. A mode-coupling theory analysis is provided in support of the explanation. Chapter 13 presents a molecular dynamics study of a binary mixture of prolate ellipsoids of revolution with different aspect ratios interacting with each other through a generalized Gay-Berne potential. Such a study allows to investigate directly the aspect ratio dependence of the dynamical behavior. In the concluding note, chapter 14 starts with a brief summary of the outcome of the thesis and ends up with suggestion of a few relevant problems that may prove worthwhile to be addressed in future.

Page generated in 0.0526 seconds