• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 10
  • 10
  • 9
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis Of Extended Feature Models With Constraint Programming

Karatas, Ahmet Serkan 01 June 2010 (has links) (PDF)
In this dissertation we lay the groundwork of automated analysis of extended feature models with constraint programming. Among different proposals, feature modeling has proven to be very effective for modeling and managing variability in Software Product Lines. However, industrial experiences showed that feature models often grow too large with hundreds of features and complex cross-tree relationships, which necessitates automated analysis support. To address this issue we present a mapping from extended feature models, which may include complex feature-feature, feature-attribute and attribute-attribute cross-tree relationships as well as global constraints, to constraint logic programming over finite domains. Then, we discuss the effects of including complex feature attribute relationships on various analysis operations defined on the feature models. As new types of variability emerge due to the inclusion of feature attributes in cross-tree relationships, we discuss the necessity of reformulation of some of the analysis operations and suggest a revised understanding for some other. We also propose new analysis operations arising due to the nature of the new variability introduced. Then we propose a transformation from extended feature models to basic/cardinality-based feature models that may be applied under certain circumstances and enables using SAT or BDD solvers in automated analysis of extended feature models. Finally, we discuss the role of the context information in feature modeling, and propose to use context information in staged configuration of feature-models.
12

Analysis, synthesis and application of automaton-based constraint descriptions

Francisco Rodríguez, María Andreína January 2017 (has links)
Constraint programming (CP) is a technology in which a combinatorial problem is modelled as a conjunction of constraints on variables ranging over given initial domains, and optionally an objective function on the variables. Such a model is given to a general-purpose solver performing systematic search to find constraint-satisfying domain values for the variables, giving an optimal value to the objective function. A constraint predicate (also known as a global constraint) does two things: from the modelling perspective, it allows a modeller to express a commonly occurring combinatorial substructure, for example that a set of variables must take distinct values; from the solving perspective, it comes with a propagation algorithm, called a propagator, which removes some but not necessarily all impossible values from the current domains of its variables when invoked during search. Although modern CP solvers have many constraint predicates, often a predicate one would like to use is not available. In the past, the choices were either to reformulate the model or to write one's own propagator. In this dissertation, we contribute to the automatic design of propagators for new predicates. Integer time series are often subject to constraints on the aggregation of the features of all maximal occurrences of some pattern. For example, the minimum width of the peaks may be constrained. Automata allow many constraint predicates for variable sequences, and in particular many time-series predicates, to be described in a high-level way. Our first contribution is an algorithm for generating an automaton-based predicate description from a pattern, a feature, and an aggregator. It has previously been shown how to decompose an automaton-described constraint on a variable sequence into a conjunction of constraints whose predicates have existing propagators. This conjunction provides the propagation, but it is unknown how to propagate it efficiently. Our second contribution is a tool for deriving, in an off-line process, implied constraints for automaton-induced constraint decompositions to improve propagation. Further, when a constraint predicate functionally determines a result variable that is unchanged under reversal of a variable sequence, we provide as our third contribution an algorithm for deriving an implied constraint between the result variables for a variable sequence, a prefix thereof, and the corresponding suffix.

Page generated in 0.0561 seconds