• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow-directed solution self-assembly of block copolymers in microfluidic devices

Wang, Chih-Wei 07 May 2012 (has links)
The self-assembly of polystyrene-stabilized cadmium sulfide nanoparticles (PS-CdS) with amphiphilic stabilizing chains of polystyrene-block-poly(acrylic acid) (PS-b-PAA) into colloidal quantum dot compound micelles (QDCMs) is studied on two-phase gas-liquid segmented microfluidic reactors. The resulting particle sizes are found to arise from the interplay of shear-induced coalescence and particle breakup, depending on a combination of chemical and flow conditions. Variation of water content, gas-to-liquid ratio, and total flow rate, enable control of QDCM sizes in the range of 140 – 40 nm. The flow-variable shear effect on similar microfluidic reactors is then applied to direct the solution self-assembly of a PS-b-PAA block copolymer into various micelle morphologies. The difference between off-chip and on-chip morphologies under identical chemical conditions is explained by a mechanism of shear-induced coalescence enabled by strong and localized on-chip shear fields, followed by intraparticle chain rearrangements to minimize local free energies. Time-dependent studies of these nanostructures reveal that on-chip kinetic structures will relax to global equilibrium given sufficient time off-chip. Further investigations into the effect of chemical variables on on-chip shear-induced morphologies reveal a combination of thermodynamic and kinetic effects, opening avenues for morphology control via combined chemical (bottom-up) and shear (top-down) forces. An equilibrium phase diagram of off-chip micelle morphologies is constructed and used in conjunction with kinetic considerations to rationalize on-chip mechanisms and morphologies, including cylinders and vesicles, under different chemical conditions. Finally, we extend our strategy of two-phase microfluidic self-assembly of PS-b-PAA to the loading of fluorescent hydrophobic probes (pyrene and naphthalene) with different affinities for the PS core. The on-chip loading approach provides a fast alternate to the slow off-chip method, with implications for the potential development for point-of-care devices for drug loading. On-chip loading results indicate that loading efficiencies are dependent on water content and, to a lesser extent, on flow rate; the results also suggest that the on-chip morphologies of the PS-b-PAA micelles are an important factor in the loading efficiencies. / Graduate

Page generated in 0.0567 seconds