• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ATP Dynamics in Pancreatic α- and β-cells

Li, Jia January 2014 (has links)
Glucose metabolism in pancreatic α- and β-cells is believed to regulate secretion of glucagon and insulin, respectively. In β-cells, ATP links glucose metabolism to electrical activity and insulin secretion. In α-cells, ATP has been attributed various roles in glucose-regulated glucagon release, but the underlying mechanisms are poorly understood. Despite its importance in insulin and glucagon secretion little is known about ATP kinetics in α- and β-cells. In this thesis, the novel fluorescent ATP biosensor Perceval was used to monitor physiologically relevant ATP concentrations with little influence of ADP. Glucose stimulation of β-cells within mouse and human pancreatic islets induced pronounced rise of ATP with superimposed oscillations. Simultaneous measurements of the sub-plasma membrane ATP and Ca2+ concentrations revealed glucose-induced oscillations in opposite phase. ATP increased further and the oscillations ceased when voltage-dependent Ca2+ influx was prevented. In contrast, ATP promptly decreased in response to K+-depolarization-induced elevation of Ca2+. Also mobilization of Ca2+ from intracellular stores lowered ATP, but the negative effect was not due to increased ATP consumption by the sarco/endoplasmic reticulum Ca2+-ATPase. Store-operated Ca2+ entry alone had little effect but markedly elevated ATP when combined with muscarinic receptor activation. When comparing ATP and Ca2+ responses in α- and β-cells within the same islet, glucose-induced ATP generation was much less pronounced and the dose-response relationship left-shifted in the α-cells. At basal glucose, individual α-cells showed Ca2+ and concomitant ATP oscillations in opposite-phase with variable frequency. These oscillations largely cancelled out when averaging data from several α-cells. At high glucose, the Ca2+ and ATP oscillations in α-cells tended to synchronize with the corresponding β-cell oscillations. Since β-cell Ca2+ oscillations drive pulsatile insulin secretion, which is antiparallel to pulsatile glucagon secretion, there seems to be an inverse relationship between changes in α-cell Ca2+ and glucagon release. This paradox is attributed to paracrine inhibition overriding Ca2+ stimulation, since somatostatin receptor blockade potently stimulated glucagon release with little effect on α-cell Ca2+ signalling. The data indicate that complex ATP-Ca2+ interactions in α- and β-cells underlie cell-intrinsic regulation of glucagon and insulin secretion and that paracrine inhibition of glucagon release becomes important in hyperglycaemia.
2

On the Generation of cAMP Oscillations and Regulation of the Ca2+ Store-operated Pathway in Pancreatic Islet α- and β-cells

Tian, Geng January 2013 (has links)
Insulin and glucagon are released in pulses from pancreatic β- and α-cells, respectively. Both cell types are electrically excitable, and elevation of the cytoplasmic Ca2+ concentration ([Ca2+]i) due to depolarization with voltage-dependent entry of the cation is the main trigger of hormone secretion. Store-operated Ca2+ entry  (SOCE) also contributes to the [Ca2+]i elevation and this process has been suggested to be particularly important for glucagon secretion. cAMP is another important messenger that amplifies Ca2+-triggered secretion of both hormones, but little is known about cAMP dynamics in islet cells. In type-2 diabetes, there is deteriorated β-cell function associated with elevated concentrations of fatty acids, but the underlying mechanisms are largely unknown. To clarify the processes that regulate insulin and glucagon secretion, cAMP signalling and the store-operated pathway were investigated in β- and α-cells, primarily within their natural environment in intact mouse and human islets of Langerhans. Fluorescent biosensors and total internal reflection microscopy were used to investigate signalling specifically at the plasma membrane (PM). Adrenaline increased and decreased the sub-PM cAMP concentration ([cAMP]pm) in immuno-identified α-cells and β-cells, respectively, which facilitated cell identification. Glucagon elicited [cAMP]pm oscillations in α- and β-cells, demonstrating both auto- and paracrine effects of the hormone. Whereas glucagon-like peptide 1 (GLP-1) consistently elevated [cAMP]pm in β-cells, only few α-cells responded, indicating that GLP-1 regulates glucagon secretion without changes of α-cell [cAMP]pm. Both α- and β-cells responded to glucose with pronounced oscillations of [cAMP]pm that were partially Ca2+-dependent and synchronized among islet β-cells. The glucose-induced cAMP formation was mediated by plasma membrane-bound adenylyl cyclases. Several phosphodiesterases (PDEs), including the PDE1, -3, -4, and -8 families, were required for shaping the [cAMP]pm signals and pulsatile insulin secretion. Prolonged exposure of islets to the fatty acid palmitate deteriorated glucose-stimulated insulin secretion with loss of pulsatility. This defect was associated with impaired cAMP generation, while [Ca2+]i signalling was essentially unaffected. Stromal interacting molecule 1 (STIM1) is critical for activation of SOCE by sensing the Ca2+ concentration in the endoplasmic reticulum (ER). ER Ca2+ depletion caused STIM1 aggregation, co-clustering with the PM Ca2+ channel protein Orai1 and SOCE activation. Glucose, which inhibits SOCE by filling the ER with Ca2+, reversed the PM association of STIM1. Consistent with a role of the store-operated pathway in glucagon secretion, this effect was maximal at the low glucose concentrations that inhibit glucagon release, whereas considerably higher concentrations were required in β-cells. Adrenaline induced STIM1 translocation to the PM in α-cells and the reverse process in β-cells, partially reflecting the opposite effects of adrenaline on cAMP in the two cell types. However, cAMP-induced STIM1 aggregates did not co-cluster with Orai1 or activate SOCE, indicating that STIM1 translocation can occur independently of Orai1 clustering and SOCE.

Page generated in 0.0918 seconds