• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 325
  • 181
  • 43
  • 30
  • 12
  • 11
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 733
  • 171
  • 169
  • 160
  • 145
  • 111
  • 95
  • 80
  • 56
  • 56
  • 54
  • 53
  • 49
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Microsomal glutathione transferase : studies on the kinetic mechanism, species variety, binding properties and substrate measurement /

Sun, Tie-Hua, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 5 uppsatser.
42

Evolutionary analysis and posttranslational chemical modifications in protein redesign : a study on mu class glutathione transferases /

Ivarsson, Ylva, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 4 uppsatser.
43

Role of multiple glutathione transferases in bioactivation of thiopurine prodrugs : studies of human soluble glutathione transferases from alpha, kappa, mu, omega, pi, theta, and zeta classes /

Eklund, Birgitta I., January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 4 uppsatser. Med sammanfattning på svenska.
44

Metabolism of aflatoxin epoxide by glutathione S-transferase : new insights into GST function /

McHugh, Thomas Erik. January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [64]-71).
45

Assessment of nonhaem ferrous iron and glutathione redox ratio as markers of pathogeneticity of oxidative stress in different clinical groups /

Rehema, Aune, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Tartu, 2004. / Vita. Includes bibliographical references.
46

Biological significance, oxidative inhibition, and glutathiolation of human soluble catechol-O-methyltransferase /

Cotton, Naomi Johanna Helen. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 58-71).
47

Insights into the multiple functions of glutathione S-transferase P1-1 characterization of its several ligand sites and examination of its interaction with 1-cysteine peroxiredoxin /

Ralat, Luis A. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2007. / Principal faculty advisor: Roberta Colman, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
48

Hemin-mediated oxidative degradation of proteins and DNA and its role in friend cell biology

Aft, Rebecca Linda. January 1983 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1983. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
49

Ligandin in the steroidogenic tissues of the rat : characterisation, distribution and development

Eidne, Karin Ann January 1982 (has links)
One of the main problems in the field of multifunctional proteins such as ligandin is the possibility that multiple forms and isoproteins may exist. Two forms of liver ligandin [ GSH (reduced glutathione) S-transferase B] have been described, a heterodimeric form consisting of equal amounts of Ya (22000 daltons) and Yc (25000 daltons) subunits, and a homodimeric form containing only Ya. Because rat testis ligandin, prepared by the standard technique of anion-exchange and molecular exclusion chromatography, contains more Yc subunit than Ya, it has been claimed that testis and liver ligandin are different entities (Bhargava, Ohmi, Listowsky and Arias (1980) J. Biol. Chem. 255, 724-727). This thesis investigated the nature and character of ligandin in the steroid-producing tissues of the rat. A comparative study was undertaken to establish whether testis ligandin differed from liver ligandin. Different methods of purification were used to investigate testis ligandin and its relationship to other GSH S-transferases in steroidogenic tissues. Testis ligandin purified by immunoaffinity chromatography using anti-liver YaYa ligandin antiserum yielded a product identical with liver preparations (Yc=Ya). This suggests that the differences previously described may be due to contamination of testis ligandin by a closely related species. Testis ligandin prepared by the standard technique was similar to that previously reported, containing more Yc than Ya. Cross-linking studies of standard testis ligandin preparations with dimethylsuberimidate showed more than one band in the 50000 dalton region, further strengthening the view that these testis ligandin preparations may be contaminated. Since this contaminant was likely to be another GSH S-transferase, sodium dodecyl sulphate/ polyacrylamide-gel-electrophoretic analysis was performed on testis GSH S-transferases separated by CM-cellulose chromatography. GSH S-transferase AA which was present in large amounts, was shown to migrate in the same region as Yc subunit. CM-cellulose chromatography of a 'pure' standard testis ligandin preparation revealed significant amounts of GSH S-transferase AA migrating as Yc subunit, in addition to ligandin consisting of equal amounts of Ya and Yc subunits, indicating that testis ligandin is identical with liver ligandin and that previously described differences are due to a contaminant identified as GSH S-transferase AA. Studies on ligandin in other steroid-synthesising tissues showed that ovary and adrenal ligandin prepared by standard techniques also contained more Yc than Ya. Separation of ovary GSH S-transferases on CM-cellulose showed that GSH S-transferase B, the peak reacting with anti-liver YaYa ligandin antisera contained equal amounts of Ya and Y c subunits, suggesting a situation similar to that in the testis exists. Glutathione peroxidase II activity of testis and ovary GSH S-transferases was investigated. Fractions corresponding to GSH S-transferase AA, A and B exhibited activity with cumene hydroperoxide. The considerable glutathione peroxidase activity of GSH S-transferases in testis and ovary suggest a protective function for the cells of gonadal tissue against oxidative damage to essential intracellular components. Further attempts to clarify the function of ligandin in the steroid-synthesising tissues were made. The pattern of gonadal ligandin development during early life, puberty and pregnancy determined by radioimmunoassay was found to parallel serum steroid hormone concentrations. This correlation was not observed in liver or kidney. Ligandin was localised to specific cells of the steroid synthesising tissues using immunocytochemical techniques. These findings suggest that there may be a functional link between steroidogenic cells, or products of their activity and certain GSH S-transferases. Phenobarbital pre-treatment did not have any effect on developing testis, ovary or adrenal ligand in concentrations. Immunocytochemical localisation of ligandin in rat steroid-producing tissues using a peroxidase anti-peroxidase (PAP) technique with anti-liver YaYa ligandin antiserum as the first antibody, showed staining in the testis to be limited to the interstitial (Leydig) cells. Stromal cells of the ovary and the fascicular, glomerular and reticular zones of the adrenal cortex also contained immunoreactive material. PAP staining with anti-testis ligandin antisera (testis ligandin prepared using the standard technique) showed far greater intensity of staining in these tissues, presumably due to reaction with both ligand in and GSH S-transferase AA. This study has clarified the structural aspects of testis ligandin and demonstrated identity with liver ligandin. Ontogeny of ligandin in the steroidogenic tissues and localisation to specific regions in these tissues suggests a functional link between ligandin, GSH S-transferases, GSH peroxidases and activity of steroidogenic tissue.
50

Structural, functional and stability characterisation of human glutathione S-transferase Pi

Mhlanga, Donald January 2018 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements in fulfilment of the degree for Master of Science. October 2018 / Glutathione S-transferases (GSTs) are Phase II detoxification enzymes that catalyse the conjugation of glutathione (GSH) to non-polar xenobiotic compounds to form water-soluble metabolites. Despite the low level of sequence similarity, the different GST classes follow the same canonical fold. hGSTP1-1 belongs to the Pi class and is involved in detoxification, as well as other non-classical roles such as regulating the MAP kinase pathway, protecting cells from nitrosative stress and regulating the function of 1-Cys peroxiredoxin. The structure, function and stability of GSTP1-1 was characterised to gain a better understanding of the general characteristics of the enzyme. The heterologous expression of hGSTP1-1 in Escherichia coli produces high yields of the enzyme that is then purified using immobilised metal affinity chromatography. A GSH-CDNB conjugation assay shows that the enzyme catalyses this reaction with a specific activity of 55.5 μmol/min/mg. The enzyme also binds 8-anilinonaphthalene-1-sulfonic acid (ANS), resulting in a blue shift and a two-fold increase in the fluorescence intensity of ANS. Far-UV circular dichroism shows that hGSTP1-1 is a predominantly alpha-helical protein, while intrinsic fluorescence studies show that the enzyme has Trp residues. Studies done using size exclusion HPLC show that the protein adopts a monomeric structure when exposed to high salt concentrations. Thermal unfolding of hGSTP1-1 shows that the enzyme unfolds irreversibly when exposed to increasing temperatures. Urea denaturation of the enzyme follows a two-state model (N2 ↔ 2U) and shows that domain 1 and domain 2 unfold in a cooperative manner. / E.R. 2019

Page generated in 0.0947 seconds