• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Donor Substrate Specificity of Bovine Kidney Gamma-Glutamyltransferase

Agblor, Anita 14 December 2012 (has links)
Mammalian γ-glutamyltransferase (GGT) is a glycoprotein consisting of two subunits - a light chain and a heavy chain. The light chain contains the catalytic activity; the heavy chain anchors the protein to the membrane. GGT catalyzes the hydrolysis of the γ-glutamyl isopeptide bond of glutathione conjugates, releasing glutamic acid, or the transfer of the γ-glutamyl group to an acceptor substrate. The specificity of the enzyme for xenobiotic donor substrates has not been fully characterized. The transpeptidation activity of bovine kidney GGT was measured with glycylglycine as acceptor substrate and several glutathione conjugate donor substrates, representative of detoxication products of polycyclic aromatic xenobiotics. HPLC separation with UV detection was used for quantitation. The commonly-used chromogenic donor substrate γ-glutamyl-p-nitroanilide was also tested. Michaelis constants (Km) were obtained for γ-glutamyl-p-nitroanilide (0.74 mM), 4-nitrobenzyl glutathione (0.075 mM), 2,4-dinitrophenyl glutathione (0.30 mM), 4-methylbiphenylyl glutathione (0.12 mM), 1-menaphthyl glutathione (0.23 mM), and 9-methylanthracenyl glutathione (0.22 mM), indicating that enzyme activity is affected, but not strongly, by the nature of the S-substituent attached to glutathione, and there is a slight trend of higher Km values with bulkier aromatic S-substituents.
2

Secoisolariciresinol (SECO) analogues: oxidative metabolism, cytochrome P450 inhibition and implications for toxicity

2016 February 1900 (has links)
Secoisolariciresinol (SECO) is the major lignan present in flaxseed, but unlike the structurally related lignan nordihydroguaiaretic acid, it is not associated with toxicity. The major phase I metabolite of SECO is lariciresinol, likely formed as a result of para-quinone methide (p-QM) formation followed by an intramolecular cyclization, thereby minimizing any toxicity associated with the p-QM. Four analogues of SECO were used to investigate substituent effects on lignan metabolism and formation of reactive quinones. HPLC methods were developed for analysis of SECO analogues and their metabolites. The stability of SECO analogues (1 mM) in a 50 mM Na2HPO4 buffer at pH 6.0 and 7.4 were quantified. Enzymatic oxidation experiments using mushroom tyrosinase and microsomes harvested from male Sprague-Dawley rats were performed with and without a GSH trapping system. Mass spectrometry and LC-MS were used to identify metabolites. Life Technologies was contracted to perform IC50 inhibition assays on SECO and the SECO analogues against CYP3A4, CYP3A5, CYP2C9 and CYP2C19 cytochrome P450 isoforms. All SECO analogues were stable at pH 6.0. SECO-2 was stable at pH 7.4 but SECO-1, -3 and -4 were unstable at pH 7.4. Autoxidation of SECO -1, -3 and -4 were 1st order reactions with t1/2 of 9.0 h, 1.7 h and 7.0 h respectively. Mushroom tyrosinase oxidations were performed to generate ortho-quinone standards. SECO-1 -3 and -4 were oxidized by mushroom tyrosinase but SECO-2 was not. Trapping with GSH produces aromatic ring conjugates for SECO-1, -3, -4. Results from microsomal oxidations for SECO-1, -3 and -4 are consistent with these standards. SECO-2 was metabolized by a microsomal system to produce a benzyl GSH adduct. Dealkylation products were also observed. All SECO analogues formed quinones but interestingly, GSH conjugation was competitive with intramolecular cyclization. All cytochrome P450 isoforms were inhibited by every analogue tested to varying degrees, a potential cause of toxicity concerns. Quinones are known to cause toxicity in vivo, including cytotoxicity, immunotoxicity, and carcinogenesis. Our results suggest that since the phenol and catechol lignans form GSH adducts in addition to intramolecular cyclization products, this class of lignans have the potential to cause toxicity.

Page generated in 0.0726 seconds