• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward Transition State Analysis of O-Glycoside Hydrolysis by Human Sucrase/Isomaltase

Bakhtiari, Rasa January 2014 (has links)
Type 2 diabetes is a major health concern worldwide. One of its complications is postprandial hyperglycemia, i.e., high blood glucose concentrations, caused by glucose fast release from dietary polysaccharides into the bloodstream after meals. α-Glucosidase inhibitor drugs reduce postprandial hyperglycemia by inhibiting maltase/glucoamylase (MGAM) and sucrase/isomaltase (SI). MGAM and SI transform polysaccharides into absorbable monosaccharides, and inhibiting them delays monosaccharide release into the blood. The three commercially available α-glucosidase inhibitors are limited by their absorption abilities, inhibition efficacies, and side effects, which highlights the need for more specific α-glucosidase inhibitors. Because enzymes catalyze their reactions by tightly binding to their cognate transition states (TS), TS analogs can be powerful inhibitors and potential drugs. The measurement and interpretation of kinetic isotope effects (KIEs) is the only method that can directly determine TS structures on large molecules. In this work, methods to prepare radioisotopically labelled maltose were developed, as well as methods to measure KIEs on acid- and enzyme-catalyzed maltose hydrolysis. However, the methods developed did not achieve the required precision for TS analysis. Also, KIEs were calculated computationally for a model reaction of maltose hydrolysis. / Thesis / Master of Science (MSc)
2

Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae

Barker, Megan 20 August 2012 (has links)
N-glycosylation is the most common eukaryotic post-translational modification, impacting on protein stability, folding, and protein-protein interactions. More broadly, N-glycans play biological roles in reaction kinetics modulation, intracellular protein trafficking, and cell-cell communications. The machinery responsible for the initial stages of N-glycan assembly and processing is found on the membrane of the endoplasmic reticulum. Following N-glycan transfer to a nascent glycoprotein, the enzyme Processing α-Glucosidase I (GluI) catalyzes the selective removal of the terminal glucose residue. GluI is a highly substrate-specific enzyme, requiring a minimum glucotriose for catalysis; this glycan is uniquely found in biology in this pathway. The structural basis of the high substrate selectivity and the details of the mechanism of hydrolysis of this reaction have not been characterized. Understanding the structural foundation of this unique relationship forms the major aim of this work. To approach this goal, the S. cerevisiae homolog soluble protein, Cwht1p, was investigated. Cwht1p was expressed and purified in the methyltrophic yeast P. pastoris, improving protein yield to be sufficient for crystallization screens. From Cwht1p crystals, the structure was solved using mercury SAD phasing at a resolution of 2 Å, and two catalytic residues were proposed based upon structural similarity with characterized enzymes. Subsequently, computational methods using a glucotriose ligand were applied to predict the mode of substrate binding. From these results, a proposed model of substrate binding has been formulated, which may be conserved in eukaryotic GluI homologs.
3

Structural Investigation of Processing α-Glucosidase I from Saccharomyces cerevisiae

Barker, Megan 20 August 2012 (has links)
N-glycosylation is the most common eukaryotic post-translational modification, impacting on protein stability, folding, and protein-protein interactions. More broadly, N-glycans play biological roles in reaction kinetics modulation, intracellular protein trafficking, and cell-cell communications. The machinery responsible for the initial stages of N-glycan assembly and processing is found on the membrane of the endoplasmic reticulum. Following N-glycan transfer to a nascent glycoprotein, the enzyme Processing α-Glucosidase I (GluI) catalyzes the selective removal of the terminal glucose residue. GluI is a highly substrate-specific enzyme, requiring a minimum glucotriose for catalysis; this glycan is uniquely found in biology in this pathway. The structural basis of the high substrate selectivity and the details of the mechanism of hydrolysis of this reaction have not been characterized. Understanding the structural foundation of this unique relationship forms the major aim of this work. To approach this goal, the S. cerevisiae homolog soluble protein, Cwht1p, was investigated. Cwht1p was expressed and purified in the methyltrophic yeast P. pastoris, improving protein yield to be sufficient for crystallization screens. From Cwht1p crystals, the structure was solved using mercury SAD phasing at a resolution of 2 Å, and two catalytic residues were proposed based upon structural similarity with characterized enzymes. Subsequently, computational methods using a glucotriose ligand were applied to predict the mode of substrate binding. From these results, a proposed model of substrate binding has been formulated, which may be conserved in eukaryotic GluI homologs.

Page generated in 0.0455 seconds