• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 81
  • 18
  • 14
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 316
  • 78
  • 55
  • 52
  • 33
  • 28
  • 26
  • 25
  • 24
  • 23
  • 23
  • 22
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The effects of selected agricultural chemicals on freshwater microalgae and cladocerans in laboratory studies, with particular emphasis on hormesis

Zalizniak, Liliana, liliana.zalizniak@rmit.edu.au January 2007 (has links)
This thesis examines the toxicity of the herbicide glyphosate (two formulations ¡V technical grade and Roundup Biactive RB) and the insecticide chlorpyrifos CPF to a model freshwater food chain of a producer and consumer. The importance of studying the toxicity of low (environmentally realistic) concentrations of pesticides to non-target organisms is highlighted. An extensive literature review on the toxicity of glyphosate and chlorpyrifos to aquatic organisms is provided. The requirements for the maintenance of algal (Chlorella vulgaris, Chlorella pyrenoidosa and Pseudokirchneriella subcapitata) and Daphnia carinata cultures are discussed. The effects of two formulations of the herbicide glyphosate (technical grade and Roundup Biactive„µ) and the insecticide chlorpyrifos on the growth of Chlorella pyrenoidosa and Pseudokirchneriella subcapitata were studied, and the EC50 values determined. Hormesis was observed when P. subcapitata was exposed to concentrations of Roundup equal to 7% and 4% of its EC50 respectively. When exposed to chlorpyrifos concentrations 0.3-5 ƒÝg/L, hormesis was observed for both algal species with a maximum at 0.06% of EC50. The effects of sublethal concentrations of chlorpyrifos on population characteristics of Daphnia carinata were investigated in multiple-generation toxicity testing using individual culture. Exposure to chlorpyrifos affected survival and fecundity of animals in the first generation. In the second generation the most affected endpoint was time to the first brood with an indication of hormesis. LC50 tests were then conducted using animals of the third generation from each of the exposures in individual tests. Results of testing the third generation showed a constant significant decline in LC50 in the order of control daphnids through to ¡¥0.1 LC50¡¦ pre-exposed daphnids. The same experimental protocol was used in testing of glyphosate (technical grade and Roundup Biactive). Glyphosate was tested in two different media: sea salt solution and M4 medium, while Roundup Biactive was tested in M4 medium. Results indicated that glyphosate and Roundup Biactive had low toxicity to Daphnia. Hormesis was evident in sea salt medium exposures in the first and second generations of daphnids with glyphosate. When exposed to glyphosate and Roundup Biactive in M4 medium animals showed no indication of hormesis. It is hypothesized that glyphosate may have compensated for the lack of microelements in the sea salt medium, and possible mechanisms discussed.The modifying effect of glyphosate on the toxicity of cadmium to Daphnia carinata was studied using the same experimental design. Low concentrations of Roundup Biactive reduced the toxicity of cadmium, and the performance of daphnia was enhanced in terms of animal size, survival, fecundity, and the rate of natural increase in both generations in the presence of glyphosate. However when the third generation was tested for their sensitivity to Cd in the 48-h LC50 experiments there was no difference between RB-free and RB-spiked treatments in pair wise comparisons, indicating that no adaptation mechanisms were involved in the enhancement. The implications of these observed effects for environmental freshwater food chains subjected to pesticide exposure are discussed and recommendations on modifying pesticide use are provided.
82

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
83

Novel sample preparation and TOF-MS analysis of environmental and toxicological analytes using EPA method 6800

Wagner, Rebecca 30 January 2012 (has links)
The quantitative analysis of environmental and toxicological samples must be reliable, rapid, and in some cases field portable. In the United States, the employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern. Nerve agent degradative products (methylphosphonic acid) as well as surrogates (glyphosate) must be detected at low quantities in various water matrices. Current methods involve tedious and time-consuming derivatizations for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation using atmospheric pressure chemical ionization-quadrupole-time of flight-mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. <br>The use of illicit drugs is also an increasing problem in the United States. Toxicological analysis of illicit drugs is important for death investigation as well as in the treatment of individuals who abuse and misuse drugs. This dissertation describes a newly developed analytical method for the simultaneous quantitative analysis of heroin, 6-acetylmorphine, morphine, cocaine, codeine, methadone, and fentanyl in synthetic urine. The resolution of an electrospray ionization-time of flight-mass spectrometer (ESI-TOF-MS) was utilized for simultaneous analysis of the drugs after extraction from urine using two newly developed SPE procedures. <br>The first SPE technique described in this dissertation is solid phase extraction-isotope dilution mass spectrometry (SPE-IDMS). It involves applying EPA Method 6800 in which a naturally occurring sample is pre-equilibrated with an isotopically enriched standard prior to SPE. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto a SPE column independently from the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation by molecular IDMS calculations. The SPE methods, in conjunction with IDMS, eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This dissertation describes two newly developed sample preparation techniques for the analysis of environmental and toxicological samples as well as statistical probability analysis for accurate molecular IDMS. / Bayer School of Natural and Environmental Sciences / Chemistry and Biochemistry / PhD / Dissertation
84

Rhizobacteria associated with glyphosate-resistant soybean (Glycine Max)

Kim, Su-Jung. January 2006 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 27, 2007) Vita. Includes bibliographical references.
85

Molecular characterisation and expression profiles of the CP4 EPSPS gene in field-tested transgenic onions (Allium cepa L.)

Davis, Sheree Alma January 2007 (has links)
The onion (Allium cepa L.) is the most agronomically important vegetable crop to New Zealand. In temperate climates, such as New Zealand, the most prominent problem associated with onion production is weed control. To address this problem, glyphosate-resistant onions were generated in a range of germplasm backgrounds via Agrobacterium-mediated transformation of immature embryos (Eady et al. 2003a). This thesis contains an analysis of these onions. PCR and Southern analysis were used to create molecular profiles for individual transgenic events. Of the 17 putatively transgenic onion lines tested, 16 contained a single copy of the CP4 EPSPS gene integrated into their genomes, and one line had two copies of the gene. The spectinomycin resistance gene, located on the backbone of the vectors used in the transformation process, was detected in two of the glyphosate-resistant onion lines tested. Ten different glyphosate-resistant onion lines were subjected to field trial evaluation over the 2004/2005 growing season in Canterbury. Glyphosate-resistant onion seedlings were transplanted into the field in a randomised block design and a subset of plants, chosen to represent selected lines, were sampled. Tissue was harvested from young leaves, old leaves, and bulbs. Quantitative multiplex RT-PCR was used to assess expression of the CP4 EPSPS transcript, and protein levels were determined using an ELISA-based assay. The transgene appears to be highly transcribed in some lines, as expression of the CP4 EPSPS gene was in the same order of magnitude as the highly transcribed 18S internal control. The CP4 EPSPS protein levels of the glyphosate resistant onion lines presented in this thesis ranged between 0.36–7.44 µg CP4 g-1FW in the leaf samples, which is a little lower than, but still similar to, values reported for glyphosate resistant corn and poplar. This project reports the first in-depth analysis into the expression of the CP4 EPSPS gene in field-grown glyphosate-resistant onion lines.
86

Ecophysiological studies of the invasive weed Chromolaena odorata (L.) King and Robinson and its control in KwaZulu-Natal.

Naidoo, Kubendran Kista. 15 September 2014 (has links)
Despite increased interest in the control and spread of the alien weed, Chromolaena odorata, little is known of its photosynthetic characteristics under field conditions. The aim of the study was to obtain a better understanding of the ecophysiological attributes of C. odorata that contribute to its invasive success. Photosynthetic performance of C. odorata was evaluated by monitoring diurnal changes in gas exchange, chlorophyll a fluorescence and plant water relations. Gas exchange characteristics of plants growing in exposed and shaded environments, as well as seasonal patterns, were evaluated. The response of C. odorata to water stress was also determined. Chromolaena odorata exhibited high CO2 uptake rates with no light saturation. Shade plants had significantly larger leaf surface areas and greater concentrations of total chlorophyll, total carotenoids and chlorophylls a and b than sun plants. Relatively high photosynthetic uptake rates in C. odorata may allow for greater carbon gain in high light environments thus contributing to increased growth and spread of the species. Chromolaena odorata can successfully acclimatise to low photosynthetic photon flux density (PPFD), thus, outcompeting less tolerant species under low light conditions. Leaf conductance, CO2 uptake, transpiration and chlorophyll fluorescence parameters in winter were tightly coupled to summer. Plants had higher water use efficiency (WUE) in summer compared to winter, probably to maximise CO2 uptake and minimise water loss. There was a progressive decrease in leaf water potential with increase in water stress in water stressed (WS) plants. The leaves of WS plants showed signs of severe wilting 10 days after the onset of stress compared to well watered (WW) plants. Increased proline concentration and leaf wilting probably increase (WUE) and may be an adaptive strategy to protect against dehydration injury.The effects of the herbicide, glyphosate, on gas exchange and translocation were studied. Glyphosate treatment decreased leaf conductance leading to a reduction in CO2 uptake and transpiration. Glyphosate is a mobile herbicide that is transported from leaves to roots and caused death of plants within a week of treatment. The potential antimicrobial properties of the weed were evaluated using selected bacteria and fungi. Crude leaf extracts exhibited some antibacterial and antifungal activity. Extracts from the weed are unlikely to be useful antimicrobial sources due to low concentrations of active compounds. A co-ordinated strategy, taking into account the high plasticity of the weed, is needed to curtail the spread of C. odorata. The ecophysiological responses to environmental conditions should be considered when planning management and control strategies for C. odorata. / Ph.D. University of KwaZulu-Natal, Durban 2013.
87

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
88

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
89

Weed resistance risk management in glyphosate-resistant cotton

Werth, Jeff Alan January 2006 (has links)
The introduction of glyphosate resistance into Australian cotton systems will have an effect on conventional weed management practices, the weed species present and the risk of glyphosate resistance evolving in weed species. Therefore, it is important that the effects of these management practices, particularly a potential reduction in Integrated Weed Management (IWM) practices, be examined to determine their impact on weed population dynamics and resistance selection. The study began in 2003 with a survey of 40 growers in four major cotton growing regions in Australia to gain an understanding of how adoption of glyphosate resistance had influenced the weed spectrum, weed management practices and herbicide use after three years of glyphosate-resistant cotton being available. The 10 most common weeds reported on cotton fields were the same in glyphosate-resistant and conventional fields. In this survey, herbicide use patterns were altered by the adoption of glyphosate-resistant cotton with up to six times more glyphosate being applied and with 21% fewer growers applying pre-emergence herbicides in glyphosate-resistant cotton fields. Other weed control practices, such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing, were only reduced marginally. A systems experiment was conducted to determine differences in the population dynamics of Echinochloa crus-galli (barnyardgrass) and Urochloa panicoides (liverseed grass) under a range of weed management regimes in a glyphosate-resistant cotton system. These treatments ranged from a full IWM system to a system based soley on the use of glyphosate. The experiment investigated the effect of the treatments on the soil seed bank, weed germination patterns and weed numbers in the field. All applied treatments resulted in commercially acceptable control of the two grass weeds. However, the treatments containing soil-applied residual herbicides proved to be more effective over the period of the experiment. The treatment with a reduced residual herbicide program supplemented with glyphosate had a level of control similar to the full IWM treatments with less input, providing a more economical option. The effectiveness of these treatments in the long-term was examined in a simulation model to determine the likelihood of glyphosate resistance evolving using barnyardgrass and liverseed grass as model weeds. Seed production and above-ground biomass of barnyardgrass and liverseed grass in competition with cotton were measured. In all experiments, seed production and biomass plant⁻¹ decreased as weed density increased while seed production and biomass m⁻¹ tended to increase. Seed production m⁻¹ reached 40,000 and 60,000 for barnyardgrass and liverseed grass, respectively. In 2004-05, weeds were also planted 6 weeks and 12 weeks after the cotton was planted. Biomass and seed production of the two weeds planted 6 weeks after cotton were significantly reduced with seed production declining to 12,000 and 2,500 seeds m⁻¹ row for barnyardgrass and liverseed grass, respectively. Weeds planted 12 weeks after cotton planting failed to emerge. This experiment highlighted the importance of early season weed control and effective management of weeds that are able to produce high seed numbers. A glyphosate dose-mortality experiment was conducted in the field to determine levels of control of barnyardgrass and liverseed grass. Glyphosate provided effective control of both species with over 85% control when the rate applied was greater than 690 g ae ha⁻¹. Dose-mortality curves for both species were obtained for use in the glyphosate resistance model. Data from the experimental work were combined to develop a glyphosate resistance model. Outputs from this model suggest that if glyphosate were used as the only form of weed control, resistance in weeds is likely to eventuate after 12 to 17 years, depending on the characteristics of the weed species, initial resistance gene frequencies and any associated fitness penalties. If glyphosate was used in conjunction with one other weed control method, resistance was delayed but not prevented. The simulations suggested that when a combination of weed control options was employed in addition to glyphosate, resistance would not evolve over the 30-year period of the simulation. These simulations underline the importance of an integrated strategy in weed management to prevent glyphosate resistance evolving from the use of glyphosate-resistant cotton. Current management conditions of growing glyphosate-resistant (Roundup Ready &reg) cotton should therefore prevent glyphosate resistance evolution. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2006.
90

Molecular characterisation and expression profiles of the CP4 EPSPS gene in field-tested transgenic onions (Allium cepa L.)

Davis, Sheree Alma January 2007 (has links)
The onion (Allium cepa L.) is the most agronomically important vegetable crop to New Zealand. In temperate climates, such as New Zealand, the most prominent problem associated with onion production is weed control. To address this problem, glyphosate-resistant onions were generated in a range of germplasm backgrounds via Agrobacterium-mediated transformation of immature embryos (Eady et al. 2003a). This thesis contains an analysis of these onions. PCR and Southern analysis were used to create molecular profiles for individual transgenic events. Of the 17 putatively transgenic onion lines tested, 16 contained a single copy of the CP4 EPSPS gene integrated into their genomes, and one line had two copies of the gene. The spectinomycin resistance gene, located on the backbone of the vectors used in the transformation process, was detected in two of the glyphosate-resistant onion lines tested. Ten different glyphosate-resistant onion lines were subjected to field trial evaluation over the 2004/2005 growing season in Canterbury. Glyphosate-resistant onion seedlings were transplanted into the field in a randomised block design and a subset of plants, chosen to represent selected lines, were sampled. Tissue was harvested from young leaves, old leaves, and bulbs. Quantitative multiplex RT-PCR was used to assess expression of the CP4 EPSPS transcript, and protein levels were determined using an ELISA-based assay. The transgene appears to be highly transcribed in some lines, as expression of the CP4 EPSPS gene was in the same order of magnitude as the highly transcribed 18S internal control. The CP4 EPSPS protein levels of the glyphosate resistant onion lines presented in this thesis ranged between 0.36–7.44 µg CP4 g-1FW in the leaf samples, which is a little lower than, but still similar to, values reported for glyphosate resistant corn and poplar. This project reports the first in-depth analysis into the expression of the CP4 EPSPS gene in field-grown glyphosate-resistant onion lines.

Page generated in 0.0603 seconds