• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 15
  • 14
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 160
  • 160
  • 89
  • 28
  • 27
  • 26
  • 25
  • 25
  • 24
  • 22
  • 21
  • 17
  • 15
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Treatment of a complex Arizona gold and silver ore

Manwaring, Edgar George Ross. Wilfley, Clifford Redman. January 1905 (has links) (PDF)
Thesis (B.S.)--University of Missouri, School of Mines and Metallurgy, 1905. / The entire thesis text is included in file. Typescript. Illustrated by authors. Title from title screen of thesis/dissertation PDF file (viewed November 20, 2008) E. G. R. Manwaring determined to be Edgar George Ross Manwaring and C. R. Wilfley determined to be Clifford Redman Wilfley from "Forty-First Annual Catalogue. School of Mines and Metallurgy, University of Missouri".
12

The character and setting of gold mineralization associated with the Betts Cove complex /

Al, Thomas Anthony. January 1990 (has links)
Thesis (M.Sc.) -- Memorial University of Newfoundland. / Typescript. Bibliography: leaves 143-151. Also available online.
13

Geology and ore deposits of the Capps Gold Mine, Mecklenburg County, North Carolina

Hoy, Robert B. Fraser, Horace J. January 1939 (has links)
Thesis (Masters) -- California Institute of Technology, 1939. / Advisor name found in the Acknowledgments pages of the thesis. Title from home page (viewed 05/18/2010). Includes bibliographic references.
14

Geochemical study of gold-quartz veins, Red-Lake gold camp, northwest Ontario

LaKind, Judy Sue. January 1984 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1984. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 47-50).
15

Geology, structure and timing of gold mineralization at the Kiena deposit, Val d'Or, Québec

Morasse, Suzanne January 1998 (has links) (PDF)
No description available.
16

Turbidite-hosted gold deposits

Leeming, Prudence Mary January 1985 (has links)
Turbidite-hosted gold deposits contribute a significant proportion to world lode gold production and have also provided substantial gold to alluvial resources. Turbidity current deposits occur throughout geological time within Archaean greenstone belts, Proterozoic orogenic belts and rifted passive continental margins, and Palaeozoic geosynclines. Representing the end member of the sedimentary cycle, turbidites have the attribute of preservation not only on an individual bed basis but also due to below wave base accumulation in submarine deeps. Cyclic deposition according to the Bouma sequence punctuates turbidite deposition by a series of diastems. Accumulation of organic, pelagic and chemical sediments may concentrate gold to protore enrichment levels i n a primary sedimentary environment. Dewatering during diagenesis and low-grade metamorphism under reducing conditions may redistribute gold with transport as low energy organo- and thio-complexes. Gold may precipitate with diagenetic pyrite and silica near black shale and/or partially replace fine carbonate detritus. Gold solubility increases with high grade amphibolite facies metamorphism (T 400ºC) when efficient leaching of gold and transport by simple chloro- and hydroxychloro - complexes to lower greenschist regions takes place. Reduced permeability of turbidite strata induces hydrofracturing which focuses dewatering solutions. Gold is deposited due to pressure and temperature decrease or local changes in physico - chemico conditions caused by the reaction of fluids with wall rocks (reactive beds in turbidites are predominantly carbonaceous strata). The largest of turbidite - hosted goldfields are confined to back -arc or marginal sea basins with restricted oceanic circulation. The richest concentrations of gold occur proximal to the original source within the greenschist facies formations lowermost in a thick turbidite sequence and exhibit strong combined structural and lithological association. Turbidites represent important strata for the concentration and preservation of gold not only during sedimentation and diagenesis but also during later deformation and metamorphism.
17

Geological characteristics of selected disseminated sediment-hosted gold deposits in Nevada, U.S.A. : in search of an exploration model

Skead, Michael Bethel 07 October 2013 (has links)
Sediment-hosted disseminated gold deposits in Nevada, western United States are major gold sources and contain reserves in excess of 1 500 metric tons of gold (Percival et aI., 1988). Discovery of these deposit types continues at a pace, with Placer Dome announcing a mojor discovery, Pipeline, to the south of the Gold Acres Mine, along the Battle Mountain - Eureka Trend in 1994 (The Northern Miner, 1994). Host sediments favoured for disseminated gold mineralisation are thinly bedded silty limestones , carbonate debris flows and to a lesser extent shale, chert and sandstone. The distribution of mineralisation is controlled essentially by the intersection of high-angle faults, which acted as conduits for hydrothermal fluids, with favourable host lithologies, anticlines, low-angle faults and other high-angle faults. Geochemical signature for these deposits is simple being Au, Ag, As, Sb, Hg, Tl, Te, F and Ba, but individual element concentrations vary greatly between and within deposits. Age of mineralisation is cause for considerable debate, and ages ranging between isotopic dates of approximately 117 Ma to early to mid-Tertiary (30-40 Ma) are proposed. Most of these deposits are situated along three major trends namely the Carlin, Battle Mountain - Eureka and Getchell trends. The Battle Mountain - Eureka trend and, to a lesser extent the Carlin trend, are defined by major linear aeromagnetic and gravity anomalies , which are believed to reflect deep-seated structures. Most deposits are hosted in autochthonous Devonian, thinly bedded, silty limestones that occur as windows through what is believed to be allochthonous Ordovician siliciclastic sediments, which were transported from west to east along the Roberts Mountains thrust during the late-Devonian Antler Orogeny. However, recent fossil dating of what were thought to be Ordivician siliciclastic sediments, gives a Devonian age. This questions the age of Ordivician sediments at the other deposits and the interpretation of the structural windows in which deposits are located. Fault-bounded, proximal, carbonate debris-flow breccias are now recognised as a major host to mineralisation. These debris flow breccias, together with interbedded carbonate and siliciclastic sediments, carbonaceous sediments and soft sediment deformation are all characteristics of lithologies in pull-apart basins which develop along a major strike slip faults. It is proposed that sediment-hosted disseminated gold mineralisation is controlled by the distribution of deep-seated long-lived, predominantly right-lateral strike-slip faults. It is along these strike-slip faults that syn-sedimentary pull-apart basins developed, within which sediments favoured by epigenetic gold mineralisation were deposited. These pull-apart basins were then overprinted by post-depositional extensional structures, such as negative flower structures. Igneous intrusions and hydrothermal cells have exploited these extensional structures in both compressional and extensional regional tectonic regimes. This model explains the characteristics of the host sediment at many of the deposits, the spatial relationship between igneous intrusion and mineralisation, spanning the period Cretaceous through to mid-Tertiary, the distribution of deposits as districts along major regional trends and why hydrothermal activity is noted between deposit districts but with no complementary mineralisation. Mineralisation is controlled predominantly by high angle structures and although the recent age for mineralisation at the Betze/Post deposit is ~ 117 Ma (Arehart et aI., 1993a), placing it in the compressional Sevier Orogeny, these high-angle structures would be developed within local extensional tectonic domains as described above. This model can, and should, be applied to other areas of the world where similar geological features exist. In exploring for these deposits in Nevada the distribution of Ordovician siliciclastic sediments should be reviewed, especially where spatially associated with deep regional structures. Ordovician sediments have historically been regarded as unfavourable, hence large areas for potential exploration have been ignored but with new ages for these sediments this opens large areas for potential discoveries. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
18

A review of sediment-hosted gold deposits of the world with special emphasis on recent discoveries outside the U.S.A

Daglioglu, Yasar Mehmet January 1996 (has links)
Most of the Great Basin sediment-hosted gold deposits are located along well defined, northwest-striking trends. Trends coincide with faults, intrusive rocks and magnetic anomalies. Sedimentary host rocks are siltstone, sandstone, conglomerate, argillic, interbedded chert and shales. Silty bedded silty dolomites, limestone and carbonaceous shales are the most favourable hosts. High, and locally, low-angle faults are very important structural features related to the formation of the ore bodies. High-angle faults are conduits of hydrothermal fluids which react, shatter and prepare the favourable host rock. Decalcification, silicification, and argillization are the most common hydrothermal alteration types. Jasperoid (intense silica replacement) is a significant characteristic; not all of these deposits are gold-bearing. Most deposits contain both oxidized and unoxidized ore. Fine grained disseminated pyrite, arsenian pyrite, and carbonaceous material are the most common hosts for gold in many deposits. These deposits are also characterized by high Au/Ag ratios, notable absence of base metal and geochemical associations of Au, As, Sb, Hg, Ba and TI. Recently numerous sediment-hosted gold deposits have been recognized in different regions of the world. They vary in their size, grades, textwe, host rock lithology, degrees of structural control and chemical characteristics. However, they have many common features which are very similar to the general characteristics of sediment-hosted gold deposits in the Great Basin, U.S.A. Besides these similarities, several unusual features are recorded in some newly discovered deposits elsewhere, such as predominant fault controlled paleokarst related mineralization and the lack of two very common trace elements (Hg, TI) in Lobongan/Alason, Indonesia; and Early Proterozoic age metamorphosed host rocks and lack of Sb in Maoling, China. The discovery of the deep ores in the Post-Betze and Rabbit Canyon, Nevada, proposed sediment-hosted Au emplacement at deeper level (4 ± 2 km; Kuehn & Rose, 1995) combined with a lack of field evidence for paleowater table and paleosurface features has ruled out a shallow epithermal origin. Recent discoveries in other parts of the world throw important new light on the ongoing genetic problems. Intrusive rocks are present in nearly all sediment-hosted gold deposits. Numerous intrusion-centred districts worldwide are characterized by tWo or more different mineralization types and consequently by metal zoning. Sediment-hosted gold deposits are proposed as a distal part of intrusion-centred magmatic hydrothermal systems (Sillitoe &Bonham, 1990).
19

The gold deposits of Fifteen mile stream, Nova Scotia.

Cameron, Harcourt Leslie. January 1945 (has links)
No description available.
20

The genesis and controls of gold mineralization south of Rehoboth, Namibia

Whitfield, Derek January 1991 (has links)
Gold mineralization is hosted within gossanous quartz-haematite veins in volcano-sedimentary lithologies of the Klein Aub - Rehoboth basin of the Irumide Belt, Namibia. Mineralization and hydrothermal alteration are restricted to deformed lithologies particularly the metasediments. Lithological relationships, geochemistry and metallogenic characteristics of the Irumide Belt suggest an intra-continental rift setting. Copper mineralization is well known along the length of the belt, from Klein Aub in the southwest to Ghanzi in the northeast, whereas gold mineralization appears restricted to the Klein Aub Rehoboth basin. The gold is envisaged as having being leached initially from graben fill sequences during rift closure and basin dewatering. Location of the mineralization is strongly controlled by structure and lithological contact zones. Such zones are percieved as having acted as conduit zones for escaping mineralized fluids during basin closure and deformation. Apart from the lack of an effective mineralizing trap, all features consistent with the development of an ore deposit are present. The largest mineralization traps within the area studied are shear zones followed by lithological contact zones. The Mebi and Blanks gold mines are developed over large shear zones while the Swartmodder and Neuras gold mines are situated over mineralized lithological contacts. The Swartmodder copper mine yielded ore from a mineralized schist enclave within granite. Copper and gold occurrences are attributed to two contrasting styles of mineralization. Copper mineralization is suggested to have developed during initial rifting of the belt (ie. stratabound sedimentary exhalative type), while the gold and minor copper resulted from rift closure and basin dewatering. Although no economical orebody was realized during the course of this study a model is proposed for the development of mineralization within the Irumide basement lithologies as a working hypothesis for future exploration.

Page generated in 0.0488 seconds