• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Global Optimization Techniques Based on Swarm-intelligent and Gradient-free Algorithms

Li, Futong 18 June 2021 (has links)
The need for solving nonlinear optimization problems is pervasive in many fields. Particle swarm optimization, advantageous with the simple underlying implementation logic, and simultaneous perturbation stochastic approximation, which is famous for its saving in the computational power with the gradient-free attribute, are two solutions that deserve attention. Many researchers have exploited their merits in widely challenging applications. However, there is a known fact that both of them suffer from a severe drawback, non- effectively converging to the global best solution, because of the local “traps” spreading on the searching space. In this article, we propose two approaches to remedy this issue by combined their advantages. In the first algorithm, the gradient information helps optimize half of the particles at the initialization stage and then further updates the global best position. If the global best position is located in one of the local optima, the searching surface’s additional gradient estimation can help it jump out. The second algorithm expands the implementation of the gradient information to all the particles in the swarm to obtain the optimized personal best position. Both have to obey the rule created for updating the particle(s); that is, the solution found after employing the gradient information to the particle(s) has to perform more optimally. In this work, the experiments include five cases. The three previous methods with a similar theoretical basis and the two basic algorithms take participants in all five. The experimental results prove that the proposed two algorithms effectively improved the basic algorithms and even outperformed the previously designed three algorithms in some scenarios.
2

High Performance Multi-Objective Voyage Planning Using Local Gradient-Free Methods

Fejes, Niklas January 2016 (has links)
A number of parallel gradient-free local optimization methods are investigated in application to problems of voyage planning for maritime ships. Two optimization algorithms are investigated, a parallel version of the Nelder-Mead Simplex method and the Subplex method with Nelder-Mead Simplex as its inner solver. Additionally, two new formulations of the optimization problem are suggested which together with an improved implementation of the objective function increases the overall performance of the model. Numerical results show the efficiency of these methods in comparison with the earlier introduced Grid search method and solvers from an open-source optimization library.
3

Gradient-Based Wind Farm Layout Optimization

Thomas, Jared Joseph 07 April 2022 (has links) (PDF)
As wind energy technology continues to mature, farm sizes grow and wind farm layout design becomes more difficult, in part due to the number of design variables and constraints. Wind farm layout optimization is typically approached using gradient-free methods because of the highly multi-modal shape of the wind farm layout design space. Gradient-free method performance generally degrades with increasing problem size, making it difficult to find optimal layouts for larger wind farms. However, gradient-based optimization methods can effectively and efficiently solve large-scale problems with many variables and constraints. To pave the way for effective and efficient wind farm layout optimization for large-scale wind farms, we have worked to overcome the primary barriers to applying gradient-based optimization to wind farm layout optimization. To improve model/algorithm compatibility, we adjusted wake and wind farm models, adding more realistic curvature and smoothness to enable optimization algorithms to travel through areas in the design space where they had previously gotten stuck. We reduced the number of function calls required for gradient-based wind farm layout optimization by over three orders of magnitude for large farms by using algorithmic differentiation to compute derivatives. We reduced the multi-modality of the wind farm layout design space using wake expansion continuation (WEC). We developed WEC to work with existing optimization algorithms, enabling them to get out of local optima while remaining fully gradient-based. Across four case studies, WEC found results with lower wake loss, on average, than the other methods we tested. To resolve concerns about optimization algorithms exploiting model inaccuracies, we compared the initial and optimized layouts to large-eddy simulation (LES) results. The simple models predicted an AEP improvement of 7.7% for a low-TI case, and LES predicted 9.3%. For a high-TI case, the simple models predicted a 10.0% improvement in AEP and LES predicted 10.7%. To resolve uncertainty regarding relative solution quality for gradient-based and gradient-free methods, we collaborated with seven organizations to compare eight optimization methods. Each method was managed by researchers experienced with them. All methods found solutions of similar quality, with optimized wake loss between 15.48 % and 15.70 %. WEC with SNOPT was the only purely gradient-based method included and found the third-to-best solution.

Page generated in 0.0671 seconds