1 |
O método do gradiente espectral projetado aplicado ao problema de reconstrução digital de imagens usando regularização l1 / The spectral gradient method applied to the Image Inpainting problem using l1-RegularizationAlmeida, Anderson Conceição de 18 September 2015 (has links)
O problema de reconstrucão digital de imagens (Image Inpainting) possui diversas abordagens para sua resolução. Uma possibilidade consiste na sua modelagem como um problema de otimizacão contínua (lasso). Na presente dissertacão aplica-se o método do gradiente espectral projetado a esse problema. Desenvolve-se inteiramente a modelagem do problema assim como a implementacão computacional do método de otimização que o resolve. Resultados computacionais demonstram a qualidade do método para um conjunto de imagens digitais / The image inpainting problem has several resolution approaches. One possibility consists in its modeling as a continuous optimization problem. In the present dissertation we apply the spectral projected gradient method to this problem. We develop the whole modeling of the problem as well as the computational implementation of the optimization method to solve it. Computational results show the quality of the method for a set of digital images
|
2 |
Aplicação do método do Gradiente Espectral Projetado ao problema de Compressive Sensing / Applications of the Spectral Prjected Gradient for Compressive Sensing theoryChullo Llave, Boris 19 September 2012 (has links)
A teoria de Compressive Sensing proporciona uma nova estratégia de aquisição e recuperação de dados com bons resultados na área de processamento de imagens. Esta teoria garante recuperar um sinal com alta probabilidade a partir de uma taxa reduzida de amostragem por debaixo do limite de Nyquist-Shanon. O problema de recuperar o sinal original a partir das amostras consiste em resolver um problema de otimização. O método de Gradiente Espectral Projetado é um método para minimizar funções suaves em conjuntos convexos que tem sido aplicado com frequência ao problema de recuperar o sinal original a partir do sinal amostrado. Este trabalho dedica-se ao estudo da aplicação do Método do Gradiente Espectral Projetado ao problema de Compressive Sensing. / The theory of compressive sensing has provided a new acquisition strategy and data recovery with good results in the image processing area. This theory guarantees to recover a signal with high probability from a reduced sampling rate below the Nyquist-Shannon limit. The problem of recovering the original signal from the samples consists in solving an optimization problem. The Spectral Projected Gradient (SPG) is a method to minimize continuous functions over convex sets which often has been applied to the problem of recovering the original signal from sampled signals. This work is dedicated to the study and application of the Spectral Projected Gradient method to Compressive Sensing problems.
|
3 |
O método do gradiente espectral projetado aplicado ao problema de reconstrução digital de imagens usando regularização l1 / The spectral gradient method applied to the Image Inpainting problem using l1-RegularizationAnderson Conceição de Almeida 18 September 2015 (has links)
O problema de reconstrucão digital de imagens (Image Inpainting) possui diversas abordagens para sua resolução. Uma possibilidade consiste na sua modelagem como um problema de otimizacão contínua (lasso). Na presente dissertacão aplica-se o método do gradiente espectral projetado a esse problema. Desenvolve-se inteiramente a modelagem do problema assim como a implementacão computacional do método de otimização que o resolve. Resultados computacionais demonstram a qualidade do método para um conjunto de imagens digitais / The image inpainting problem has several resolution approaches. One possibility consists in its modeling as a continuous optimization problem. In the present dissertation we apply the spectral projected gradient method to this problem. We develop the whole modeling of the problem as well as the computational implementation of the optimization method to solve it. Computational results show the quality of the method for a set of digital images
|
4 |
Aplicação do método do Gradiente Espectral Projetado ao problema de Compressive Sensing / Applications of the Spectral Prjected Gradient for Compressive Sensing theoryBoris Chullo Llave 19 September 2012 (has links)
A teoria de Compressive Sensing proporciona uma nova estratégia de aquisição e recuperação de dados com bons resultados na área de processamento de imagens. Esta teoria garante recuperar um sinal com alta probabilidade a partir de uma taxa reduzida de amostragem por debaixo do limite de Nyquist-Shanon. O problema de recuperar o sinal original a partir das amostras consiste em resolver um problema de otimização. O método de Gradiente Espectral Projetado é um método para minimizar funções suaves em conjuntos convexos que tem sido aplicado com frequência ao problema de recuperar o sinal original a partir do sinal amostrado. Este trabalho dedica-se ao estudo da aplicação do Método do Gradiente Espectral Projetado ao problema de Compressive Sensing. / The theory of compressive sensing has provided a new acquisition strategy and data recovery with good results in the image processing area. This theory guarantees to recover a signal with high probability from a reduced sampling rate below the Nyquist-Shannon limit. The problem of recovering the original signal from the samples consists in solving an optimization problem. The Spectral Projected Gradient (SPG) is a method to minimize continuous functions over convex sets which often has been applied to the problem of recovering the original signal from sampled signals. This work is dedicated to the study and application of the Spectral Projected Gradient method to Compressive Sensing problems.
|
5 |
Tópicos em otimização com restrições lineares / Topics on linearly-constrained optimizationAndretta, Marina 24 July 2008 (has links)
Métodos do tipo Lagrangiano Aumentado são muito utilizados para minimização de funções sujeitas a restrições gerais. Nestes métodos, podemos separar o conjunto de restrições em dois grupos: restrições fáceis e restrições difíceis. Dizemos que uma restrição é fácil se existe um algoritmo disponível e eficiente para resolver problemas restritos a este tipo de restrição. Caso contrário, dizemos que a restrição é difícil. Métodos do tipo Lagrangiano aumentado resolvem, a cada iteração, problemas sujeitos às restrições fáceis, penalizando as restrições difíceis. Problemas de minimização com restrições lineares aparecem com freqüência, muitas vezes como resultados da aproximação de problemas com restrições gerais. Este tipo de problema surge também como subproblema de métodos do tipo Lagrangiano aumentado. Assim, uma implementação eficiente para resolver problemas com restrições lineares é relevante para a implementação eficiente de métodos para resolução de problemas de programação não-linear. Neste trabalho, começamos considerando fáceis as restrições de caixa. Introduzimos BETRA-ESPARSO, uma versão de BETRA para problemas de grande porte. BETRA é um método de restrições ativas que utiliza regiões de confiança para minimização em cada face e gradiente espectral projetado para sair das faces. Utilizamos BETRA (denso ou esparso) na resolução dos subproblemas que surgem a cada iteração de ALGENCAN (um método de lagrangiano aumentado). Para decidir qual algoritmo utilizar para resolver cada subproblema, desenvolvemos regras que escolhem um método para resolver o subproblema de acordo com suas características. Em seguida, introduzimos dois algoritmos de restrições ativas desenvolvidos para resolver problemas com restrições lineares (BETRALIN e GENLIN). Estes algoritmos utilizam, a cada iteração, o método do Gradiente Espectral Projetado Parcial quando decidem mudar o conjunto de restrições ativas. O método do gradiente Espectral Projetado Parcial foi desenvolvido especialmente para este propósito. Neste método, as projeções são computadas apenas em um subconjunto das restrições, com o intuito de torná-las mais eficientes. Por fim, tendo introduzido um método para minimização com restrições lineares, consideramos como fáceis as restrições lineares. Incorporamos BETRALIN e GENLIN ao arcabouço de Lagrangianos aumentados e verificamos experimentalmente a eficiência e eficácia destes métodos que trabalham explicitamente com restrições lineares e penalizam as demais. / Augmented Lagrangian methods are widely used to solve general nonlinear programming problems. In these methods, one can split the set of constraints in two groups: the set of easy and hard constraints. A constraint is called easy if there is an efficient method available to solve problems subject to that kind of constraint. Otherwise, the constraints are called hard. Augmented Lagrangian methods solve, at each iteration, problems subject to the set of easy constraints while penalizing the set of hard constraints. Linearly constrained problems appear frequently, sometimes as a result of a linear approximation of a problem, sometimes as an augmented Lagrangian subproblem. Therefore, an efficient method to solve linearly constrained problems is important for the implementation of efficient methods to solve nonlinear programming problems. In this thesis, we begin by considering box constraints as the set of easy constraints. We introduce a version of BETRA to solve large scale problems. BETRA is an active-set method that uses a trust-region strategy to work within the faces and spectral projected gradient to leave the faces. To solve each iteration\'s subproblem of ALGENCAN (an augmented Lagrangian method) we use either the dense or the sparse version of BETRA. We develope rules to decide which box-constrained inner solver should be used at each augmented Lagrangian iteration that considers the main characteristics of the problem to be solved. Then, we introduce two active-set methods to solve linearly constrained problems (BETRALIN and GENLIN). These methods use Partial Spectral Projected Gradient method to change the active set of constraints. The Partial Spectral Projected Gradient method was developed specially for this purpose. It computes projections onto a subset of the linear constraints, aiming to make the projections more efficient. At last, having introduced a linearly-constrained solver, we consider the set of linear constraints as the set of easy constraints. We use BETRALIN and GENLIN in the framework of augmented Lagrangian methods and verify, using numerical experiments, the efficiency and robustness of those methods that work with linear constraints and penalize the nonlinear constraints.
|
6 |
Tópicos em otimização com restrições lineares / Topics on linearly-constrained optimizationMarina Andretta 24 July 2008 (has links)
Métodos do tipo Lagrangiano Aumentado são muito utilizados para minimização de funções sujeitas a restrições gerais. Nestes métodos, podemos separar o conjunto de restrições em dois grupos: restrições fáceis e restrições difíceis. Dizemos que uma restrição é fácil se existe um algoritmo disponível e eficiente para resolver problemas restritos a este tipo de restrição. Caso contrário, dizemos que a restrição é difícil. Métodos do tipo Lagrangiano aumentado resolvem, a cada iteração, problemas sujeitos às restrições fáceis, penalizando as restrições difíceis. Problemas de minimização com restrições lineares aparecem com freqüência, muitas vezes como resultados da aproximação de problemas com restrições gerais. Este tipo de problema surge também como subproblema de métodos do tipo Lagrangiano aumentado. Assim, uma implementação eficiente para resolver problemas com restrições lineares é relevante para a implementação eficiente de métodos para resolução de problemas de programação não-linear. Neste trabalho, começamos considerando fáceis as restrições de caixa. Introduzimos BETRA-ESPARSO, uma versão de BETRA para problemas de grande porte. BETRA é um método de restrições ativas que utiliza regiões de confiança para minimização em cada face e gradiente espectral projetado para sair das faces. Utilizamos BETRA (denso ou esparso) na resolução dos subproblemas que surgem a cada iteração de ALGENCAN (um método de lagrangiano aumentado). Para decidir qual algoritmo utilizar para resolver cada subproblema, desenvolvemos regras que escolhem um método para resolver o subproblema de acordo com suas características. Em seguida, introduzimos dois algoritmos de restrições ativas desenvolvidos para resolver problemas com restrições lineares (BETRALIN e GENLIN). Estes algoritmos utilizam, a cada iteração, o método do Gradiente Espectral Projetado Parcial quando decidem mudar o conjunto de restrições ativas. O método do gradiente Espectral Projetado Parcial foi desenvolvido especialmente para este propósito. Neste método, as projeções são computadas apenas em um subconjunto das restrições, com o intuito de torná-las mais eficientes. Por fim, tendo introduzido um método para minimização com restrições lineares, consideramos como fáceis as restrições lineares. Incorporamos BETRALIN e GENLIN ao arcabouço de Lagrangianos aumentados e verificamos experimentalmente a eficiência e eficácia destes métodos que trabalham explicitamente com restrições lineares e penalizam as demais. / Augmented Lagrangian methods are widely used to solve general nonlinear programming problems. In these methods, one can split the set of constraints in two groups: the set of easy and hard constraints. A constraint is called easy if there is an efficient method available to solve problems subject to that kind of constraint. Otherwise, the constraints are called hard. Augmented Lagrangian methods solve, at each iteration, problems subject to the set of easy constraints while penalizing the set of hard constraints. Linearly constrained problems appear frequently, sometimes as a result of a linear approximation of a problem, sometimes as an augmented Lagrangian subproblem. Therefore, an efficient method to solve linearly constrained problems is important for the implementation of efficient methods to solve nonlinear programming problems. In this thesis, we begin by considering box constraints as the set of easy constraints. We introduce a version of BETRA to solve large scale problems. BETRA is an active-set method that uses a trust-region strategy to work within the faces and spectral projected gradient to leave the faces. To solve each iteration\'s subproblem of ALGENCAN (an augmented Lagrangian method) we use either the dense or the sparse version of BETRA. We develope rules to decide which box-constrained inner solver should be used at each augmented Lagrangian iteration that considers the main characteristics of the problem to be solved. Then, we introduce two active-set methods to solve linearly constrained problems (BETRALIN and GENLIN). These methods use Partial Spectral Projected Gradient method to change the active set of constraints. The Partial Spectral Projected Gradient method was developed specially for this purpose. It computes projections onto a subset of the linear constraints, aiming to make the projections more efficient. At last, having introduced a linearly-constrained solver, we consider the set of linear constraints as the set of easy constraints. We use BETRALIN and GENLIN in the framework of augmented Lagrangian methods and verify, using numerical experiments, the efficiency and robustness of those methods that work with linear constraints and penalize the nonlinear constraints.
|
Page generated in 0.1044 seconds