• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Irrigation effects on growth, yield and quality of winter wheat as predicted by models and observed in field experiments

Clarke, Matthew P. January 2002 (has links)
No description available.
2

A study of the genetics and physiological basis of grain protein concentration in Durum wheat (<i>Triticum turgidum</i> L. var. <i>durum</i>)

Suprayogi, Yogi 11 December 2009
In durum wheat (<i>Triticum turgidum</i> L. var <i>durum</i>), grain protein concentration (GPC) and gluten quality are among the important factors influencing pasta-making quality. Semolina with high protein content produces pasta with increased tolerance to overcooking and greater cooked firmness. However, genetic improvement of GPC is difficult largely because of its negative correlation with grain yield, and a strong genotype x environment interaction. Therefore, identification of quantitative trait loci (QTL) for high GPC and the associated markers is a priority to enhance selection efficiency in breeding durum wheat for elevated GPC. At a physiological level, GPC is influenced by several factors including nitrogen remobilization from vegetative organs and direct post-anthesis nitrogen uptake (NUP) from the soil. Understanding the relationship between elevated GPC and nitrogen remobilization, and post-anthesis NUP will enable durum wheat breeders to develop varieties that not only produce high yield and high GPC, but also exhibit better nitrogen use efficiency. The objectives of this study were: (1) to identify and validate QTL for elevated GPC in two durum wheat populations; and (2) to determine if elevated GPC is due to more efficient nitrogen remobilization and/or greater post-anthesis NUP. A genetic map was constructed with SSR and DArT® markers in a doubled haploid population from the cross Strongfield x DT695, and GPC data were collected in replicated trials in six Canadian environments from 2002 to 2005. Two stable QTL for high GPC, QGpc.usw-B3 on chromosome 2B and QGpc.usw-A3 on 7A, were identified. Strongfield, the high GPC parent, contributed the alleles for elevated GPC at both QTL. These two QTL were not associated with variation in grain weight (seed size) or grain yield. QGpc.usw-A3 was validated in a second Strongfield-derived population as that QTL was significant in all six testing environments. Averaged over five locations, selection for QGpc.usw-A3 resulted in a +0.4% to +1.0% increase in GPC, with only small effects on yield in most environments. A physiological study of grain protein accumulation revealed that regardless of the growing condition, nitrogen remobilization was the major contributor for grain nitrogen in durum genotypes evaluated, accounting for an average of 84.3% of total GPC. This study confirmed that introgression of Gpc-B1 into Langdon resulted in increased GPC, and this GPC increase was due to higher N remobilization. Strongfield expressed greater N remobilization than DT695 and the semi-dwarf cultivar Commander, but N remobilization was not the determining factor for Strongfields elevated GPC. Strongfield expressed greater post-anthesis NUP than DT695. Similarly, a selection of six high-GPC doubled haploid (DH) lines from the cross DT695 x Strongfield expressed significantly greater post-anthesis NUP than six low-GPC DH selections, supporting the hypothesis that elevated GPC in Strongfield is derived from greater post-anthesis NUP. All six high-GPC DH selections carried the Strongfield allele at QGpc.usw-A3, suggesting this QTL maybe associated with post-anthesis NUP.
3

A study of the genetics and physiological basis of grain protein concentration in Durum wheat (<i>Triticum turgidum</i> L. var. <i>durum</i>)

Suprayogi, Yogi 11 December 2009 (has links)
In durum wheat (<i>Triticum turgidum</i> L. var <i>durum</i>), grain protein concentration (GPC) and gluten quality are among the important factors influencing pasta-making quality. Semolina with high protein content produces pasta with increased tolerance to overcooking and greater cooked firmness. However, genetic improvement of GPC is difficult largely because of its negative correlation with grain yield, and a strong genotype x environment interaction. Therefore, identification of quantitative trait loci (QTL) for high GPC and the associated markers is a priority to enhance selection efficiency in breeding durum wheat for elevated GPC. At a physiological level, GPC is influenced by several factors including nitrogen remobilization from vegetative organs and direct post-anthesis nitrogen uptake (NUP) from the soil. Understanding the relationship between elevated GPC and nitrogen remobilization, and post-anthesis NUP will enable durum wheat breeders to develop varieties that not only produce high yield and high GPC, but also exhibit better nitrogen use efficiency. The objectives of this study were: (1) to identify and validate QTL for elevated GPC in two durum wheat populations; and (2) to determine if elevated GPC is due to more efficient nitrogen remobilization and/or greater post-anthesis NUP. A genetic map was constructed with SSR and DArT® markers in a doubled haploid population from the cross Strongfield x DT695, and GPC data were collected in replicated trials in six Canadian environments from 2002 to 2005. Two stable QTL for high GPC, QGpc.usw-B3 on chromosome 2B and QGpc.usw-A3 on 7A, were identified. Strongfield, the high GPC parent, contributed the alleles for elevated GPC at both QTL. These two QTL were not associated with variation in grain weight (seed size) or grain yield. QGpc.usw-A3 was validated in a second Strongfield-derived population as that QTL was significant in all six testing environments. Averaged over five locations, selection for QGpc.usw-A3 resulted in a +0.4% to +1.0% increase in GPC, with only small effects on yield in most environments. A physiological study of grain protein accumulation revealed that regardless of the growing condition, nitrogen remobilization was the major contributor for grain nitrogen in durum genotypes evaluated, accounting for an average of 84.3% of total GPC. This study confirmed that introgression of Gpc-B1 into Langdon resulted in increased GPC, and this GPC increase was due to higher N remobilization. Strongfield expressed greater N remobilization than DT695 and the semi-dwarf cultivar Commander, but N remobilization was not the determining factor for Strongfields elevated GPC. Strongfield expressed greater post-anthesis NUP than DT695. Similarly, a selection of six high-GPC doubled haploid (DH) lines from the cross DT695 x Strongfield expressed significantly greater post-anthesis NUP than six low-GPC DH selections, supporting the hypothesis that elevated GPC in Strongfield is derived from greater post-anthesis NUP. All six high-GPC DH selections carried the Strongfield allele at QGpc.usw-A3, suggesting this QTL maybe associated with post-anthesis NUP.
4

Analyse génétique et écophysiologique de l'écart à la relation teneur en protéines - rendement en grains chez le blé tendre (Triticum aestivum L.) / Genetic and ecophysiological analysis of the deviation from the protein content - grain yield relationship in common wheat (Triticum aestivum L.)

Bogard, Matthieu 11 January 2011 (has links)
Le rendement en grains (Rdt) et la teneur en protéines (%Prot) sont deux cibles majeures dans les programmes de sélection variétale chez le blé car ces caractères contribuent à la valeur économique de cette culture. Malheureusement, leur amélioration simultanée est empêchée par la relation négative %Prot-Rdt. Il a été montré que l’écart à cette relation (“Grain Protein Deviation”, GPD) est déterminé en partie génétiquement et serait utile pour modifier cette relation négative mais ses bases biologiques restent mal comprises à ce jour. Nous avons montré que le GPD est principalement relié à la variabilité génétique pour l’absorption d’azote post-floraison (ABSN) dans les conditions agro-climatiques du Nord-Ouest de l’Europe. Nous proposons que la variabilité génétique pour l’accès à l’azote du sol (architecture et fonctionnement racinaire) ou pour la régulation de ABSN par le statut azoté (transport et assimilation de l’azote) pourrait expliquer le GPD. Etant donné que le retardement de la sénescence durant la période post-floraison peut résulter en une augmentation de ABSN, nous avons analysé les déterminants génétique des relations entre durée de sénescence des feuilles après floraison et Rdt ou %Prot, observées au niveau phénotypique, en utilisant des données acquises sur une population de cartographie de blé cultivée au sein d’un large réseau expérimental. Une association positive entre durée de sénescence des feuilles après floraison et %Prot ou Rdt a été observée selon les environnements étudiés. Nous faisons l’hypothèse que l’impact d’un retardement de la sénescence des feuilles après floraison pourrait être modulé selon la disponibilité en azote durant cette période, ce qui conduirait à modifier la relation %Prot-Rdt selon les environnements étudiés. Enfin, des données obtenues sur trois populations de cartographie cultivées dans un large réseau expérimental ont permis de suggérer, après méta-analyse de QTL, des régions génomiques potentiellement utiles en sélection pour améliorer la %Prot sans diminuer le Rdt. Ceci a permis de mettre en avant des régions situées sur les chromosomes 2A et 3B. En particulier, la région située sur le 2A pourrait être reliée à la présence d’un gène codant pour une glutamine synthétase chloroplastique qui a été associée à la variabilité génétique pour %Prot chez le blé tendre dans une étude antérieure. / Grain yield (GY) and grain protein concentration (GPC) are two major targets in wheat breeding programs as these traits contribute to the economic value of the wheat crop. Unfortunately, their simultaneous improvement is hampered by the genetic negative GPC-GY relationship. It has been shown that the deviation to this relationship (“Grain Protein Deviation”, GPD) has a genetic basis and might be useful to shift this negative relationship but its biological bases remain unclear. GPD was shown to be mainly related to the genetic variability for post-anthesis nitrogen (N) uptake (PANU) in the North-West European agro-climatic conditions. We proposed that the genetic variability for the access to N in the soil (root architecture and functioning) or for the regulation of PANU by the plant N status (N transport and assimilation) could explain GPD. As delaying leaf senescence during the post-anthesis period might result in increasing PANU, we analysed the genetic determinants of the phenotypic relationships between leaf senescence duration after anthesis and GPC or GY using data obtained on a wheat mapping population grown in a large mutli-environment trial network. A positive association was found between leaf senescence duration and GPC or GY depending onthe environment. We suggested that the impact of delaying leaf senescence after anthesis on GY or GPC might be modulated by the N availability during the post-anthesis period and would lead to modify the GPC-GY relationship depending on the considered environments. Finally, data obtained on three connected mapping populations grown in a large mutli-environment trial network were used to suggest by meta-QTL analysis potential genomic regions possibly useful in wheat breeding to improve GPC without reducing GY. This put forward genomic regions located on the 2A and 3B chromosomes as potentially interesting targets to improve GPC. In particular, the region on the 2A might be related to a chloroplastic glutamine synthetase gene previously shown to be associated with genetic variability for GPC in bread wheat.
5

Analyse écophysiologique et génétique de l’absorption d’azote post-floraison chez le blé tendre (Triticum aestivum L.) en relation avec la concentration en protéines des grains / Ecophysiological and genetic analysis of post-flowering nitrogen uptake in bread wheat (Triticum aestivum L.) in relation with grain protein concentration

Taulemesse, François 16 June 2015 (has links)
La concentration en protéines des grains est un critère qualitatif majeur qui conditionne la valeur économique et technologique du blé tendre (Triticum aestivum L.). Cependant, la forte relation négative existant entre concentration en protéines et rendement en grains implique que l’amélioration de la concentration en protéines par une approche génétique soit complexe à atteindre sans impacter négativement le rendement. Pour contourner cette difficulté, il a été proposé qu’une sélection variétale basée sur l’écart à cette relation négative (nommé Grain Protein Deviation ; GPD) permette d’améliorer la concentration en protéines indépendamment du rendement. Au niveau physiologique, le GPD est fortement corrélé à la capacité des génotypes à absorber de l’azote après floraison indépendamment de la quantité d’azote déjà absorbée à floraison, suggérant que la satiété en azote soit à la base de son établissement. Envisager une sélection sur la base du GPD nécessite cependant d’acquérir des connaissances approfondies des mécanismes impliqués dans la régulation de l’absorption d’azote par la satiété en azote, qui permettraient de cibler précisément des traits simples à quantifier et robustement associés à cette capacité accrue d’accumulation de protéines dans les grains.Cette étude se base sur deux expérimentations conduites en conditions contrôlées et une expérimentation au champ. Dans chacune de ces expérimentations, différents niveaux de fertilisation ont été appliqués en pré-floraison afin d’obtenir des statuts azotés contrastés à floraison. L’effet du statut azoté à floraison sur l’absorption post-floraison a ensuite été observé dans différentes conditions de disponibilités d’azote après floraison. Des mesures physiologiques et moléculaires ont été réalisées en parallèle des mesures d’absorption d’azote.Nous avons mis en évidence que l’absorption d’azote post-floraison présente une dynamique élaborée qui suppose qu’elle est soumise à des régulations complexes. Parmi celles-ci, le statut azoté des plantes à floraison conditionne en grande part la quantité d’azote absorbée dans les jours qui suivent la floraison (PANUprécoce , de floraison à floraison + 250 degrés-jour). La quantité de PANUprécoce se présente comme un déterminant fort de la concentration en protéines des grains du fait de la forte corrélation positive observée entre ces deux traits en conditions contrôlées et au champ, et ce indépendamment du niveau de rendement. L’étude de deux génotypes robustement contrastés pour le GPD a montré qu’à statuts azotés équivalents, la quantité de PANUprécoce est sujette à des effets génétiques qui tendent à confirmer l’impact de la variabilité génétique de satiété en azote sur l’établissement du GPD.Ces travaux ont permis de proposer des marqueurs du GPD potentiellement valorisables en sélection. Au niveau physiologique, la croissance des tiges après floraison se présente comme un marqueur prometteur du GPD car ce trait est fortement corrélé à la PANUprécoce. Au niveau moléculaire, la concentration en nitrates des racines, également soumise à des effets génétiques, est proposée comme marqueur potentiel du fait de son rôle probable dans la régulation expressionnelle des gènes impliqués dans l’absorption et l’assimilation d’azote. / Grain protein concentration is one of the major qualitative criteria of bread wheat (Triticum aestivum L.) economic and technological value. However, the negative relationship existing between protein concentration and grain yield implies that grain protein concentration improvement is complex to achieve without detrimental effect on grain yield. Breeding programs based on the deviation to this negative relationship (Grain protein deviation of GPD) have been proposed to be a suitable strategy to improve grain nitrogen concentration without detrimental effects on yield. At a physiological level, GPD is strongly correlated with genotypes aptitude to uptake nitrogen after flowering independently of the nitrogen amount already taken up before this stage, suggesting that satiety for nitrogen could be involved in its establishment. Breeding for GPD implies however a more detailed knowledge of the processes implied in nitrogen uptake regulation by nitrogen plant satiety. This would allow targeting traits both simple to measure and robustly associated with this increased capacity to accumulate proteins in grains.The present study is based on two experiments carried on under controlled conditions and a third led under field conditions. In all experiments, various levels of pre-flowering fertilization were applied in order to obtain contrasted plant nitrogen status at flowering. Nitrogen status effect on post-flowering nitrogen uptake was observed under various post-flowering N availability conditions. Physiological and molecular measurements were carried out in parallel with uptake measurements.We highlighted that post-flowering nitrogen uptake has an elaborate dynamic, suggesting the involvement of complex regulations. Among these, plant nitrogen status at flowering determines to a great extent the amount of nitrogen taken up during the days following flowering (early PANU, from flowering to flowering +250 °C.days-1). Early PANU appears to be a strong determinant of grain protein concentration, as strong positive correlations were observed between these two traits both under controlled conditions and field conditions, independently of grain yield level. The study of two genotypes strongly contrasted for GPD highlighted that, despite comparable N status, early PANU is subjected to strong genetic variations which tend to identify N satiety as a determinant of GPD.The present study identified robust markers of GPD of potential use in plant breeding. At a physiological level, post flowering stem elongation appears to be a promising marker of GPD since this trait is strongly correlated with early PANU. At a molecular level, root nitrate concentration, a trait submitted to genetic variations, is also proposed as a marker of GPD because of its role in the expression regulation of the genes governing nitrogen uptake and assimilation.

Page generated in 0.1224 seconds