1 |
Granular Impact Dynamics: Grain Scale to MacroscaleClark, Abe January 2014 (has links)
<p>Granular impact, where a foreign object strikes a granular material like sand, is common in nature and industry. Due to experimental difficulties in obtaining sufficiently fast data at the scale of a single grain, a description of this process which connects to physics at the grain-scale is lacking. In this thesis, I will present data from a series of two-dimensional granular impact experiments. By cutting each grain out of a photoelastic material and using a very fast camera, we obtain data on the intruder trajectory, as well as the particle flow and force response of the granular material. Past experiments have shown that the decelerating force on an intruder moving through a granular medium is often well captured by a force law which is dominated by a velocity-squared drag force. Using the intruder trajectories, as well as the flow and force response of the granular material, I will demonstrate that, while these force laws describe the intruder trajectories on slow time scales, the instantaneous force on the intruder is highly fluctuating in space and time. I will particularly focus on the velocity-squared drag force, showing that it arises from random, locally normal collisions with chain-like clusters of particles which send energy and momentum away into the granular material. In this regime, the particles and intruder reach a kind of adiabatic steady state, where the particle motion scales linearly with the intruder speed. However, for impact velocities which are fast compared to the rate of momentum transfer within the granular material, the system response qualitatively changes, behaving like an elastic solid with a shock-like response at impact.</p> / Dissertation
|
2 |
Dynamic loading of structures by high speed granular mediaGoel, Ashish January 2018 (has links)
This thesis analyses the impact of granular aggregates with structures using experiments and numerical simulations. Original contributions include an insight into multiple factors affecting the loading and damage to the structures, along with study of numerical parameters important for realistic prediction of the interaction between the granular media and structures. It extends the current understanding related to such interactions, with an underlying motivation to guide strategies in order to reduce the structural damage. The response of structures impacted by granular media (sand or soil) is of significant research interest for many applications. One of the applications is for landmine explosions which causes ejection of soil from ground and damage to structures impacted by this ejected soil. Experimentation is done in a laboratory setting where the cylindrical sand slugs are generated at high speed using an impulse provided by a piston. This induces a velocity gradient along the slug, because of which the slug expands during the flight before impacting the target. Deformable as well as rigid flat targets are considered in two orientations relative to the incoming slug: perpendicular (i.e. normal orientation) and inclined at an angle of 45°. The targets are supported by force transducers to capture the loading from the slug. Simulations are performed using a combination of discrete particle and finite element schemes, which enables the analysis of the fully coupled interaction between the flowing granular media and the structure. A contact model involving multiple parameters is used for inter-particle and particle-target contact. Firstly, a numerical analysis is performed to characterise the temporal evolution of slugs and their impact on monolithic beams constrained at the ends. Out of all the parameters used for inter-particle contact definition in discrete particle method, only the contact stiffness is found to effect the velocity gradient in the slug before it impacts the target. Other factor influencing the gradient is the acceleration provided by the piston. A strong dependence of beam deflection on the stand-off distance is observed due to the velocity gradient in the slugs. As the second step, the effect of target surface properties on the transmitted momentum is analysed. Experiments are done by applying coatings of different hardness and roughness on the target surface impacted by sand slugs. For normally oriented targets, the transmitted momentum is observed to be insensitive to the change in surface coating. In contrast, for inclined targets, a significant influence of coatings is observed. Additionally, the momentum transmitted to the inclined targets is always less than that for normal targets. Numerical analysis of this surface effect reveals that assuming the slug particles to be spherical shape in simulations does not capture the particle/target interactions accurately and under-predicts the frictional loading on the target. Following this, a detailed numerical study is done to understand the effect of the shape of particles in the slug. Simple shaped non-spherical particles are constructed by combining spherical sub-particles. With increasing angularity of particles in the slug, the frictional loading on the target is shown to increase. This results in an increase of momentum transmitted to inclined targets. For normally oriented targets however, the particle shape does not affect the overall transmitted momentum, which is a behaviour similar to that observed when studying the effect of target surface properties. In addition, effect of fracture of particles in the slug is analysed by using beam connections between sub-particles that break during the impact with the target. If the fracture results in increasing particle angularity, the transmitted momentum increases, whereas the situation reverses if fracture results on more spherical shaped particles. Lastly, a strategy to reduce the loading on the targets is analysed by using sacrificial coating on the target surface. In experiments, this coating is placed on the rigid target surface using a lubricant at their interface. When impacted by the slug, this coating slides on the target surface, resulting in a reduction of frictional loading on the target. If the friction at the coating/target interface vanishes, the transmitted momentum approaches the theoretical minimum value. Simulations are used to first validate the experimental observations and then to extend the concept of sliding coatings using deformable targets. Both the transmitted momentum and deflections depended on the thickness of the target and coating. When a coating is used, the deflections increase due to reduction in target thickness. It is found that the best strategy to reduce the damage to the target is to use least possible thickness of the coating and minimise the friction at the interface between the coating and the target. The presented work examines many of the factors that affect the loading on the target impacted by granular slugs, in addition to characterising the expansion of slugs before the target impact. The analysed factors include those already known such as target stand-off distance, inclination and unveils others such as target surface properties and granular properties. The numerical analysis discloses important parameters and shows the effect of particle shape, highlighting the shortcomings of widely used spherical particle assumption in the numerical studies. A strategy using a sacrificial coating to reduce damage to the target is also analysed.
|
Page generated in 0.0466 seconds