1 |
Analysis of Current Flows in Electrical Networks for Error-Tolerant Graph MatchingGutierrez Munoz, Alejandro 10 November 2008 (has links)
Information contained in chemical compounds, fingerprint databases, social networks, and interactions between websites all have one thing in common: they can be represented as graphs. The need to analyze, compare, and classify graph datasets has become more evident over the last decade. The graph isomorphism problem is known to belong to the NP class, and the subgraph isomorphism problem is known to be an NP-complete problem. Several error-tolerant graph matching techniques have been developed during the last two decades in order to overcome the computational complexity associated with these problems. Some of these techniques rely upon similarity measures based on the topology of the graphs. Random walks and edit distance kernels are examples of such methods. In conjunction with learning algorithms like back-propagation neural networks, k-nearest neighbor, and support vector machines (SVM), these methods provide a way of classifying graphs based on a training set of labeled instances.
This thesis presents a novel approach to error-tolerant graph matching based on current flow analysis. Analysis of current flow in electrical networks is a technique that uses the voltages and currents obtained through nodal analysis of a graph representing an electrical circuit. Current flow analysis in electrical networks shares some interesting connections with the number of random walks along the graph.
We propose an algorithm to calculate a similarity measure between two graphs based on the current flows along geodesics of the same degree. This similarity measure can be applied over large graph datasets, allowing these datasets to be compared in a reasonable amount of time. This thesis investigates the classification potential of several data mining algorithms based on the information extracted from a graph dataset and represented as current flow vectors. We describe our operational prototype and evaluate its effectiveness on the NCI-HIV dataset.
|
2 |
Graph-based features for machine learning driven code optimization / Maskinlärnings-driven programkodsoptimering med graf-baserad datautvinningKindestam, Anton January 2017 (has links)
In this paper we present a method of using the Shortest-Path Graph Kernel, on graph-based features of computer programs, to train a Support Vector Regression model which predicts execution time speedup over baseline given an unseen program and a point in optimization space, based on a method proposed in Using Graph-Based Program Characterization for Predictive Modeling by Park et al. The optimization space is represented by command-line parameters to the polyhedral C-to-C compiler PoCC, and PolyBench is used to generate the data set of speedups over baseline. The model is found to produce results reasonable by some metrics, but due to the large error and the pseudo-random behaviour of the output the method, in its current form, must reluctantly be rejected. / I den här raporten presenterar vi en metod att träna en Stöd-vektor-regressions-modell som givet ett osett program och en punkt i optimeringsrymden kan förutsäga hur mycket snabbare över baslinjen programmet kommer att exekvera förutsatt att man applicerar givna optimeringar. För att representera programmet använder vi en grafstruktur för vilken vi kan använda en grafkärna, Shortest-Path Graph Kernel, vilken kan avgöra hur lika två olika grafer är varandra. Metoden är baserad på en metod presenterad av Park et al. i Using Graph-Based Program Characterization for Predictive Modeling. Optimeringsrymden erhålls genom olika kombinationer av kommandoradsparametrar till den polyhedriska C-till-C-kompilatorn PoCC. Testdatat erhölls genom att förberäkna hastighetsfaktorer för alla optimeringar och alla program i test-algoritms-biblioteket PolyBench. Vi finner att modellen i vissa mått mätt producerar "bra" resultat, men p.g.a. av det stora felet och det slumpmässiga beteendet måste dessvärre metoden, i dess nuvarande form,förkastas.
|
3 |
Extraction et reconnaissance de primitives dans les façades de Paris à l'aide d'appariement de graphes / Extraction and recognition of object in the facades of Paris using graph matchingHaugeard, Jean-emmanuel 17 December 2010 (has links)
Cette dernière décennie, la modélisation des villes 3D est devenue l'un des enjeux de la recherche multimédia et un axe important en reconnaissance d'objets. Dans cette thèse nous nous sommes intéressés à localiser différentes primitives, plus particulièrement les fenêtres, dans les façades de Paris. Dans un premier temps, nous présentons une analyse des façades et des différentes propriétés des fenêtres. Nous en déduisons et proposons ensuite un algorithme capable d'extraire automatiquement des hypothèses de fenêtres. Dans une deuxième partie, nous abordons l'extraction et la reconnaissance des primitives à l'aide d'appariement de graphes de contours. En effet une image de contours est lisible par l'oeil humain qui effectue un groupement perceptuel et distingue les entités présentes dans la scène. C'est ce mécanisme que nous avons cherché à reproduire. L'image est représentée sous la forme d'un graphe d'adjacence de segments de contours, valué par des informations d'orientation et de proximité des segments de contours. Pour la mise en correspondance inexacte des graphes, nous proposons plusieurs variantes d'une nouvelle similarité basée sur des ensembles de chemins tracés sur les graphes, capables d'effectuer les groupements des contours et robustes aux changements d'échelle. La similarité entre chemins prend en compte la similarité des ensembles de segments de contours et la similarité des régions définies par ces chemins. La sélection des images d'une base contenant un objet particulier s'effectue à l'aide d'un classifieur SVM ou kppv. La localisation des objets dans l'image utilise un système de vote à partir des chemins sélectionnés par l'algorithme d'appariement. / This last decade, modeling of 3D city became one of the challenges of multimedia search and an important focus in object recognition. In this thesis we are interested to locate various primitive, especially the windows, in the facades of Paris. At first, we present an analysis of the facades and windows properties. Then we propose an algorithm able to extract automatically window candidates. In a second part, we discuss about extraction and recognition primitives using graph matching of contours. Indeed an image of contours is readable by the human eye, which uses perceptual grouping and makes distinction between entities present in the scene. It is this mechanism that we have tried to replicate. The image is represented as a graph of adjacency of segments of contours, valued by information orientation and proximity to edge segments. For the inexact matching of graphs, we propose several variants of a new similarity based on sets of paths, able to group several contours and robust to scale changes. The similarity between paths takes into account the similarity of sets of segments of contours and the similarity of the regions defined by these paths. The selection of images from a database containing a particular object is done using a KNN or SVM classifier.
|
Page generated in 0.0758 seconds