• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Introduction to Peg Duotaire on Graphs

Beeler, Robert A., Gray, Aaron D. 01 February 2018 (has links)
Peg solitaire is a game in which pegs are placed in every hole but one and the player jumps over pegs along rows or columns to remove them. Usually, the goal of the player is to leave only one peg. In a 2011 paper, this game is generalized to graphs. When the game is played between two players it is called duotaire. In this paper, we consider two variations of peg duotaire on graphs. In the first variation, the last player to remove a peg wins. Inspired by the work of Slater, we also investigate a variation in which one player tries to maximize the number of pegs at the end of the game while their opponent seeks to minimize this number. For both variations, we give explicit strategies for several families of graphs. Finally, we give a number of open problems as possible avenues for future research.
2

Homomorfismos de grafos / Graph Homomorphisms

Sato, Cristiane Maria 25 April 2008 (has links)
Homomorfismos de grafos são funções do conjunto de vértices de um grafo no conjunto de vértices de outro grafo que preservam adjacências. O estudo de homomorfismos de grafos é bastante abrangente, existindo muitas linhas de pesquisa sobre esse tópico. Nesta dissertação, apresentaremos resultados sobre homomorfismos de grafos relacionados a pseudo-aleatoriedade, convergência de seqüência de grafos e matrizes de conexão de invariantes de grafos. Esta linha tem se mostrado muito rica, não apenas pelos seus resultados, como também pelas técnicas utilizadas nas demonstrações. Em especial, destacamos a diversidade das ferramentas matemáticas que são usadas, que incluem resultados clássicos de álgebra, probabilidade e análise. / Graph homomorphisms are functions from the vertex set of a graph to the vertex set of another graph that preserve adjacencies. The study of graph homomorphisms is very broad, and there are several lines of research about this topic. In this dissertation, we present results about graph homomorphisms related to convergence of graph sequences and connection matrices of graph parameters. This line of research has been proved to be very rich, not only for its results, but also for the proof techniques. In particular, we highlight the diversity of mathematical tools used, including classical results from Algebra, Probability and Analysis.
3

Homomorfismos de grafos / Graph Homomorphisms

Cristiane Maria Sato 25 April 2008 (has links)
Homomorfismos de grafos são funções do conjunto de vértices de um grafo no conjunto de vértices de outro grafo que preservam adjacências. O estudo de homomorfismos de grafos é bastante abrangente, existindo muitas linhas de pesquisa sobre esse tópico. Nesta dissertação, apresentaremos resultados sobre homomorfismos de grafos relacionados a pseudo-aleatoriedade, convergência de seqüência de grafos e matrizes de conexão de invariantes de grafos. Esta linha tem se mostrado muito rica, não apenas pelos seus resultados, como também pelas técnicas utilizadas nas demonstrações. Em especial, destacamos a diversidade das ferramentas matemáticas que são usadas, que incluem resultados clássicos de álgebra, probabilidade e análise. / Graph homomorphisms are functions from the vertex set of a graph to the vertex set of another graph that preserve adjacencies. The study of graph homomorphisms is very broad, and there are several lines of research about this topic. In this dissertation, we present results about graph homomorphisms related to convergence of graph sequences and connection matrices of graph parameters. This line of research has been proved to be very rich, not only for its results, but also for the proof techniques. In particular, we highlight the diversity of mathematical tools used, including classical results from Algebra, Probability and Analysis.

Page generated in 0.1017 seconds