• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 829
  • 204
  • 133
  • 102
  • 42
  • 12
  • 12
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 1728
  • 296
  • 288
  • 279
  • 227
  • 209
  • 203
  • 186
  • 174
  • 146
  • 140
  • 127
  • 120
  • 114
  • 112
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Síntese e caracterização de grafeno por CVD catalítico em filmes finos de Ni e Cu. / Synthesis and characterization of graphene by catalytic CVD in Ni and Cu thin films.

Feria Garnica, Deissy Johanna 24 November 2017 (has links)
O Grafeno tem sido estudado há 60 anos, mas só foi desde sua primeira obtenção mediante esfoliação de grafite em 2004 por Novoselov, que obteve grande interesse por parte de pesquisadores, pois tem uma série de notáveis propriedades físicas e químicas que dificilmente são encontradas num mesmo material, o que o torna uma ferramenta de primeira ordem em muitas aplicações de diversos campos. Além disso, sua produção se limita a pequenas folhas, com defeitos e empilhadas formando multicamadas, o qual não permite seu uso em nível industrial. Isso demanda não só que o grafeno seja produzido em grande escala, mas também conservando suas propriedades. O presente trabalho reporta o estudo e estabelecimento de condições para o crescimento de folhas de grafeno, utilizando técnicas de deposição química na fase de vapor a pressão ambiente (APCVD) catalítica, e deposição química na fase vapor assistida por plasma (PECVD), também catalítica, com filmes finos de Níquel e Cobre como metais catalisadores, visto que são as técnicas e metais que tem reportado melhores resultados. Desta forma, esta pesquisa foi encaminhada a um ajuste das variáveis que intervém nas duas técnicas, tais como os gases, seus fluxos e relação entre eles, a temperatura, o tempo de deposição e as espessuras do catalisador. No caso do PECVD, a potência de RF para a geração do plasma e a pressão. Os filmes foram caracterizados por microscopia Raman, que permite ter uma avaliação aproximada do número de camadas e os defeitos presentes no material, e por microscopia eletrônica de varredura (MEV), que permite observar a morfologia das amostras e a possível presença de grafeno, e assim ter certeza da qualidade do grafeno enquanto a continuidade e tamanho das folhas. Além disso, mediante Espectroscopia de raios X por dispersão de energia (EDS), instrumento associado ao MEV, é possível identificar os elementos presentes na amostra em pontos específicos e sua porcentagem. Estes análises revelaram que o grafeno obtido foi de grande área (1 cm2) com alta cristalinidade e poucos defeitos pontuais. / Graphene has been studied for 60 years, but was only since its first achievement by graphite exfoliation in 2004 by Novoselov that got great interest by researches, because it has remarkable physical and chemical properties which are hardly found in a single material, which makes it a first-order tool for many applications in several fields. Besides that, its production is limited to small sheets with defects and stacked in multilayers, which does not allow its use at industrial level, that requires not only a large scale production of graphene but also conservation of its properties. This work reports the study and find suitable conditions for the growth of graphene sheets, using catalytic atmospheric pressure chemical vapor deposition (APCVD) and plasma enhanced chemical vapor deposition (PECVD) techniques and thin nickel and copper films as catalysts. This choice is based on the fact that both, these techniques and the metals had lead to better reported results. Thus, this research is focused on the adjustment of the parameters that intervene in the two techniques, such as precursor gases, their flows and the relationship among them, temperature, deposition time and the catalyst thickness. In the case of the PECVD, the RF power to generate the plasma and the deposition pressure. The films were characterized by Raman spectroscopy, which allows an approximate evaluation of the number of layers and the defects in the material, and by Scanning Electron Microscopy (SEM), which allows to observe the morphology of the deposited layers, and thus to ensure the quality of the graphene as far as the continuity and size of the sheets are concerned. In addition, energy dispersive X-ray spectroscopy (EDS) associated to the SEM instrument was utilized to identify the elements present in particular locations of the sample as well as their percentage. These group of analyses revealed that the obtained graphene achieved areas about 1 cm2 with high crystallinity and low punctual defects.
422

Nanodispositivos baseados em grafeno / Graphene Based Nanodevices

Sousa, José Eduardo Padilha de 20 April 2012 (has links)
Nesta tese investigamos a partir de cálculos de primeiros princípios, dispositivos e componentes de dispositivos baseados em grafeno. Abordamos os campos da nanoeletrônica e da spintrônica. Dentro da nanoeletrônica investigamos: (i) propriedades de transporte de um nanotransistor de bicamada de grafeno na presença de um gate duplo. Demonstramos que sobre a ação de um campo elétrico externo, mesmo utilizando um gate da ordem de 10 nm, à temperatura ambiente e 4.5K uma corrente nula nunca é exibida. Esses resultados são explicados por um regime de tunelamento; (ii) propriedades eletrônicas e de transporte de multicamadas de grafeno em função do número de camadas e tipo de empilhamento entre elas. Mostramos que a estrutura eletrônica do sistema depende fortemente desse novo grau de liberdade de empilhamento. Na presença de um campo elétrico externo aplicado perpendicular ao sistema, o empilhamento do tipo Bernal nunca exibe um gap de energia, ao contrário do empilhamento romboédrico que exige um gap ajustável através da intensidade do campo. Mostramos também que é possível diferenciar os tipos de empilhamentos através da resistência do sistema e variando-se a temperatura; (iii) dentro das componentes de um nanotransistor mais realista, estudamos as propriedades eletrônicas e estruturais de: (a) bicamadas de grafeno sobre um substrato de nitreto de boro hexagonal. Neste sistema o limite de voltagens que podem ser aplicadas depende fortemente do número de camadas de h-BN e da direção do campo, onde quanto menos camadas maior é a voltagem que pode ser aplicada; (b) heteroestruturas compostas de bicamadas de grafeno, nitreto de boro hexagonal e cobre. Demonstramos que para uma aplicação direta em um dispositivo a configuração com uma bicamada de grafeno depositada sobre um substrato de h-BN e este conjunto sobre a superfície de cobre é a mais favorável. Nessa configuração é possível tanto controlar o gap na bicamada como a dopagem do sistema, sem a abertura de canais de condução através do dielétrico (h-BN). Dentro do campo da spintrônica estudamos: (i) propriedades de transporte das nanofitas de grafeno (GNR) (3,0) pristinas e dopadas com boro e nitrogênio. Para as GNR pristinas mostramos com os eletrodos em um alinhamento de spin anti-paralelo o sistema apresenta um comportamento de filtro de spin, onde para tensões de bias positivos/negativos somente o canal up/down conduz. Para as GNR dopadas com boro e nitrogênio, mostramos que as correntes para os diferentes canais de spin são não degeneradas ao longo de todo o intervalo de tensões aplicadas, apresentando desse modo um comportamento de filtro de spin; (ii) finalmente estudamos as propriedades de transporte de uma junção túnel magnética, composta de GNR intercaladas por uma nanofita de nitreto de boro hexagonal. Mostramos que esse sistema pode ser utilizado tanto como filtros de spin como elementos para dispositivos de magnetoresistência gigante, onde para este último a sua eficiência é muito mais pronunciada. / In this thesis we investigated by first principle calculations, devices and components of devices based on graphene. We covered the fields of nanoelectronics and spintronics. On the field of nanoelectronics we investigated: (i) the transport properties of a dual gate bilayer graphene nanotransistor. We showed that under the action of an external electrical field, even with a gate length of 10 nm, at room temperature and 4.5K a zero current is never exhibited. These results could be explained by a tunneling regime; (ii) the electronic and transport properties of few layer graphene, as function of the number and type of stacking of the layers. We show that the electronic structure strong deppends of the stacking order. On the presence of a external electrical field applied to the system, the Bernal stacking never presents a gap, contrary to the rombohedrical one, that posses a tuneable energy gap. Also we showed that is possible to differentiate the types of stacking by the resistance of the system and varying the temperature;(iii) for the components of a more realistic nanodevice, we study the structural and electronic properties of: (a) bilayer graphene over a hexagonal boron nitride substrate. We show that the voltages that could be applied to the system strongly depends of the number 0 layers and the direction of the field, where with more layers, smaller is the field; (b) heterostructures composed with bilayer graphene, hexagonal boron nitride and cooper. We show that for a direct application on a device, the better configuration is with a bilayer graphene over the hexagonal boron nitride, and this set over a cooper. In this configuration is possible to control both the gap and the doping of the system, without the creation of conducting channels through the dielectric (h-BN). On the field of spintronics, we study: (i) the transport properties (3,0) graphene nanoribbons pristines and doped with nitrogen and boron. For the pristine GNR we show that for the electrodes in an anti-parallel alignment the system presents a spin filter behavior, where for positive/negative bias the transport is only by up/down channel. For the GNR doped with nitrogen and boron we show that the current is non-degenerated in all range of voltages applied, presenting a spin filter behavior; (ii) finally, we study the transport properties of a magnetic tunnel junction, consisting of a GNR intercalated with a hexagonal boron nitride nanoribbon. We show that such system could be used both as a spin filter as a device that uses the the giant magnetoresistance effect, where for the last the system if more efficient.
423

Processing and properties of graphene reinforced glass/ceramic composites

Porwal, Harshit January 2015 (has links)
This research provides a comprehensive investigation in understanding the effect of the addition of graphene nano-platelets (GNP) on the mechanical, tribological and biological properties of glass/ceramic composites. We investigated two kinds of materials namely amorphous matrices like glasses (silica, bioglass) and polycrystalline matrices like ceramics (alumina). The idea was to understand the effect of GNP on these matrices as GNP was expected to behave differently in these composites. Bioglass (BG) was also chosen as a matrix material to prepare BG-GNP composites. GNP can improve the electrical conductivity of BG which can be used further for bone tissue engineering applications. The effect of GNP on both electrical conductivity and bio-activity of BG-GNP composites was investigated in detail. There were three main problems for fabricating these novel nano-composites: 1) Production of good quality graphene; 2) Homogeneous dispersion of graphene in a glass/ceramic matrix and; 3) Retention of the graphitic structure during high temperature processing. The first problem was solved by synthesising GNP using liquid phase exfoliation method instead of using a commercially available GNP. The prepared GNP were ~1 μm in length with a thickness of 3-4 layers confirmed using transmission electron microscopy. In order to solve the second problem various processing techniques were used including powder and colloidal processing routes along with different solvents. Processing parameters were optimised to fabricate glass/ceramic-GNP composite powders. Finally in order to avoid thermal degradation of the GNP during high temperature processing composites were sintered using spark plasma sintering (SPS) technique. Fully dense composites were obtained without damaging GNP during the sintering process also confirmed via Raman spectroscopy. Finally the prepared composites were characterised for mechanical, tribological and biological applications. Interestingly fracture toughness and wear resistance of the silica nano-composites increased with increasing concentration of GNP in the glass matrix. There was an improvement of ~45% in the fracture toughness and ~550% in the wear resistance of silica-GNP composites with the addition of 5 vol% GNP. GNP was found to be aligned in a direction perpendicular to the applied force in SPS. In contrast to amorphous materials fracture toughness and scratch resistance of alumina-GNP composites increased only for small loading of GNP and properties of the composites decreased after a critical concentration. There was an improvement of ~40% in the fracture toughness with the addition of only 0.5 vol% GNP in the alumina matrix while the scratch resistance of the composite increased by ~10% in the micro-ductile region. Electrical conductivity of the BG-GNP composite was increased by ~9 orders of magnitude compared to pure BG. In vitro bioactivity tests performed on BG-GNP composites confirmed that the addition of GNP to BG matrix also improved the bioactivity of the nano-composites confirmed using XRD analysis. Future work should focus on understanding electrical and thermal properties of these novel nano-composites.
424

Graphene-on-silicon suspended membrane planar lightwave circuits. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Cheng, Zhenzhou. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
425

Superconductivity in two-dimensional crystals

El Bana, Mohammed Sobhy El Sayed January 2013 (has links)
Since the first isolation of graphene in 2004 interest in superconductivity and the superconducting proximity effect in monolayer or few-layer crystals has grown rapidly. This thesis describes studies of both the proximity effect in single and fewlayer graphene flakes, as well as the superconducting transition in few unit cell chalcogenide flakes. Optical and atomic force microscopy and Raman spectroscopy have been used to characterise the quality and number of molecular layers present in these flakes. Graphene structures with superconducting Al electrodes have been realised by micromechanical cleavage techniques on Si/SiO2 substrates. Devices show good normal state transport characteristics, efficient back-gating of the longitudinal resistivity, and low contact resistances. Several trials have been made to investigate proximity-induced critical currents in devices with junction lengths in the range 250-750 nm. Unfortunately, no sign of proximity supercurrents was observed in any of these devices. Nevertheless the same devices have been used to carefully characterise proximity doping, (due to the deposited electrode), and weak localisation/anti-localisation contributions to the conductivity in them. In addition this work has been extended to investigations of the superconducting transition in few unit-cell dichalcogenide flakes. Four-terminal devices have been realised by micromechanical cleavage from a 2H-NbSe2 single crystal onto Si/SiO2 substrates followed by the deposition of Cr/Au contacts. While very thin NbSe2 flakes do not appear to conduct, slightly thicker flakes are superconducting with an onset ܶ௖ that is only slightly depressed from the bulk value (7.2K). The resistance typically shows a small, sharp, high temperature transition followed by one or more broader transitions, which end in a wide tail to zero resistance at low temperatures. These multiple transitions appear to be related to disorder in the layer stacking rather than lateral inhomogeneity. The behaviour of several flakes has been characterised as a function of temperature, applied field and back-gate voltage. The resistance and transition temperatures are found to depend weakly on the gate voltage. Results have been analysed in terms of available theories for these phenomena.
426

Investigations into the supramolecular chemistry of graphene biocomposites : towards prostate cancer theranostics design, imaging and biosensing

Tyson, James Abner January 2016 (has links)
Chapter 1 includes the Introduction and literature review which describes current developments within the field of in vitro/vivo imaging of cancers, with a particular emphasis on the techniques employing fluorescence emission-based spectroscopy and imaging modalities. Examples are cited whereby graphene and its congeners have been used in conjunction with various fluorophores and peptide sequences as a means of achieving highly specific imaging probes. This section discusses aspects of energy transfer and the possibility that molecular probes can be designed to achieve both therapeutic goals and diagnosis (Theranostics). This review concludes with a discussion of the use of organic supramolecularly assembled imaging agents as a means of achieving thermodynamically controlled nano-constructs for the functionalisation of graphenes and their potential future applications as theranostic agents. Chapters 2, 3 and 4 describe the synthesis of chiral and naphthalene diimides (NDIs) which are fluorescent. Spectroscopic investigations in the solution phase are described and the propensity for aggregation in these systems is discussed. The specific nature of the self-assembly processes involved is explored in different solvent systems and in the solid state. Fluorescence lifetime imaging microscopy (FLIM) and laser scanning confocal microscopy (LSCM) are used to investigate the cellular uptake of the NDI molecules and their capacity to image living prostate cancer cells (PC-3). The NDIs are subsequently complexed supramolecularly to poly-aromatic carbon systems such as C60 and coronene (Chapter 3), as well as thermally reduced graphene oxide (Chapter 4). Chapter 3 describes the explorations into the modelling of the donor-acceptor interactions between the NDIs and the C60/coronene in order to establish binding stoichiometry and association constants. Both Chapters 3 and 4 discuss fluorescence titration and time correlated single photon counting (TCSPC) experiments which were performed as a means of establishing the presence of excited state energy transfer mechanisms. The chapters conclude with investigations in living cells in order to establish retention of in vitro fluorescence, with particular attention being paid to confirming the graphene complex stability. Chapter 5 describes the synthesis and functionalisation of a seven amino acid sequence peptide known as the G-receptor protein (GRP) binding unit of the polypeptide bombesin. The sequence binds GRPs that are known to be up-regulated in prostate cancer carcinoma and it has been widely utilised in the literature as a means of enhancing the up-take of various cancer imaging agents that employ a variety of imaging modalities. The peptide was attached to the fluorescent NDIs via carbodiimide activation protocols with the purpose of providing added specificity to the imaging agent with respect to PC-3 cells. Prior to NDI derivatisation with bombesin, electrochemical impedance spectroscopy (EIS) has been performed to establish the extent to which the peptide sequence binds to prostate cancer cells over healthy ones. The chapter concludes with confocal microscopy of the bombesin derivative NDI complexed to thermally reduced graphene oxide as a means of validating the utility of the fluorescent targeted bioconjugate as synthetic scaffolds for future early diagnosis and sensing devices for prostate cancer. Chapter 6 constitutes the summary of this work and highlights several possible areas of future developments of relevance to the results discussed and related future experiments proposed to fully validate the device assembly for prostate cancer sensing. Chapter 7 contains the Experimental section and the relevant data gathered over the course of the investigations. Additional supporting figures or data referred to but not included in the main text of the thesis are reported in the Appendices.
427

Graphene on nanoscale gratings for THz electron-beam radiation and plasmonics

Tantiwanichapan, Khwanchai 21 June 2016 (has links)
Terahertz (THz) technologies have numerous applications such as biological and medical imaging, security screening, remote sensing, and industrial process control. However, the lack of practical THz sources and detectors is still a significant problem limiting the impact of these applications. In this Thesis work, three novel THz radiation mechanisms are proposed and investigated, based on the distinctive electronic properties of charge carriers in 2D single-layer graphene and related 1D conductors (i.e., graphene nanoribbons and carbon nanotubes), combined with the use of nanoscale dielectric gratings. Numerical simulations as well as fabrication and characterization activities are carried out. The first proposed radiation mechanism is based on the mechanical corrugation of a single-layer sheet of graphene or 1D carbon conductor, deposited on a lithographically-defined sinusoidal grating. In the presence of a dc voltage, carriers will therefore undergo periodic angular motion and correspondingly radiate (similar to cyclotron emission but without the need for any external magnetic field). My numerical simulations indicate that technologically significant output power levels can correspondingly be obtained at geometrically tunable THz frequencies. Initial graphene samples on sinusoidal gratings were fabricated and found to undergo significant strain redistribution, which affects their structural quality. Charge carriers moving in a flat sheet of graphene or linear 1D carbon conductor parallel to a nanoscale grating can also produce THz radiation based on the Smith-Purcell effect. The role of the grating in this case is to diffract the evanescent electromagnetic fields produced by the moving electrons and holes so that THz light can be radiated. Once again, numerical simulations indicate that this approach is promising for the realization of ultra-compact THz sources capable of room-temperature operation. Initial experimental results with ultra-high-mobility graphene samples embedded in boron nitride films show promising THz electroluminescence spectra. The last approach considered in this Thesis involves graphene plasmons at THz frequencies, which can be excited through the decay of hot electrons injected with an applied bias voltage. A nearby grating can then be used to outcouple the guided electromagnetic fields associated with these collective charge oscillations into radiation. The excitation of these THz plasmonic resonances at geometrically tunable frequencies has been demonstrated experimentally via transmission spectroscopy measurements. / 2017-06-21T00:00:00Z
428

Dirac plasmon polaritons

Sturges, Thomas Michael Jebb January 2017 (has links)
We study theoretically graphene-like plasmonic metamaterials, in particular a honeycomb structured array of identical metallic nanoparticles, and examine the collective plasmonic modes that arise due to the near-field dipolar coupling between the localised surface plasmons of each individual nanoparticle. An analysis of the band structure of these eigenmodes reveals a phenomenal tunability granted by the polarisation of the dipole moments associated with the localised surface plasmons. As a function of the dipole orientation we uncover a rich phase diagram of gapped and gapless phases, where remarkably every gapless phase is characterised by the existence of collective plasmons that behave as massless chiral Dirac particles, in analogy to electrons in graphene. We consider lattices beyond the perfect honeycomb structure in two ways. Firstly, we break the inversion symmetry which leads to collective plasmons described as massive chiral modes with an energy dependent Berry phase. Secondly, we break the three-fold rotational symmetry and investigate generic bipartite lattices. In this scenario we progressively shift one sublattice away from the original honeycomb arrangement and observe a sequence of topological phase transitions in the phase diagram, as well as the merging and annihilation of Dirac points in the dispersions. After examining the purely plasmonic response we wish to address the true eigenmodes responsible for transporting electromagnetic radiation. For this reason we examine plasmon polaritons that arise from the strong light-matter coupling between the collective plasmons in a honeycomb array of metallic nanoparticles and the fundamental photonic mode of an enclosing cavity. Here we identify that the Dirac point remains robust and fixed in momentum space, irrespective of the light-matter coupling strength. Moreover, we demonstrate a qualitative modification of the polariton properties through modulation of the photonic environment, including order-of-magnitude renormalisation of the group velocity and the intriguing ability to invert the chirality of Dirac polaritons.
429

Theory, modelling and implementation of graphene field-effect transistor

Tian, Jing January 2017 (has links)
Two-dimensional materials with atomic thickness have attracted a lot of attention from researchers worldwide due to their excellent electronic and optical properties. As the silicon technology is approaching its limit, graphene with ultrahigh carrier mobility and ultralow resistivity shows the potential as channel material for novel high speed transistor beyond silicon. This thesis summarises my Ph.D. work including the theory and modelling of graphene field-effect transistors (GFETs) as well as their potential RF applications. The introduction and review of existing graphene transistors are presented. Multiscale modelling approaches for graphene devices are also introduced. A novel analytical GFET model based on the drift-diffusion transport theory is then developed for RF/microwave circuit analysis. Since the electrons and holes have different mobility variations against the channel potential in graphene, the ambipolar GFET cannot be modelled with constant carrier mobility. A new carrier mobility function, which enables the accurate modelling of the ambipolar property of GFET, is hence developed for this purpose. The new model takes into account the carrier mobility variation against the bias voltage as well as the mobility difference between electrons and holes. It is proved to be more accurate for the DC current calculation. The model has been written in Verilog-A language and can be import into commercial software such as Keysight ADS for circuit simulation. In addition, based on the proposed model two GFET non-Foster circuits (NFCs) are conducted. As a negative impedance element, NFCs find their applications in impedance matching of electrically small antennas and bandwidth improvement of metasurfaces. One of the NFCs studied in this thesis is based on the Linvill's technique in which a pair of identical GFETs is used while the other circuit utilises the negative resistance of a single GFET. The stability analysis of NFCs is also presented. Finally, a high impedance surface loaded with proposed NFCs is also studied, demonstrating significant bandwidth enhancement.
430

Growth mechanism and interfacial electronic properties of graphene and silicene two dimensional semiconductor materials. / 石墨烯、硅烯二維半導體材料的生長機理與界面電學性質的研究 / Shi mo xi, gui xi er wei ban dao ti cai liao de sheng chang ji li yu jie mian dian xue xing zhi de yan jiu

January 2013 (has links)
自從2004年人們在實驗室上發現石墨烯以來,IV族二維半導體材料,例如石墨烯、硅烯等,由於其優異的電學、力學、光學、以及熱力學性質,受到學術界的廣泛關注。為了使IV族二維半導體材料得到廣泛引用,穩定地生長高質量的石墨烯、硅烯二維半導體材料以及透徹的理解石墨烯、硅烯二維半導體材料和襯底之間的界面特性成為至關重要的研究方向。本文對在銅表面用多環芳香烴形成石墨烯的生長機理以及石墨烯、硅烯和襯底之間的界面電子學特性進行了詳細的分析和研究。希望以此能對IV族二維半導體材料的廣泛應用具有促進作用,並且對合理的設計電子器件結構具有新的啟示。 / 首先,我們用密度泛函理論對在銅表面用多環芳香烴形成石墨烯的生長機理進行了研究。理論計算表明在銅表面多環芳香烴形成石墨烯的生長過程主要包括:(1)在銅表面的誘導下多環芳香烴脫氫,(2)這些已經脫氫的多環芳香烴在銅表面相互結合形成石墨烯。由於銅和碳的相互作用非常弱,所以在銅表面這些已經脫氫的多環芳香烴並不會進一步分解成更小的碳團簇或者單個的碳原子。因此多環芳香烴的空間幾何構型對於最終形成的石墨烯的質量以及最低成長溫度有至關重要的影響。提高生長溫度可以提升脫氫多環芳香烴的活性和熱運動性,從而提高最終生成的石墨烯的質量。六苯并苯由於具有和石墨烯相同的六重對稱性和晶格結構,所以其在低溫生長高質量石墨烯方面最具有優勢。 / 其次,我們就石墨烯和(0001)二氧化硅表面所組成的界面的電子學特性進行了研究。結果表明石墨烯在(0001)二氧化硅表面的電子學特性主要有二氧化硅表面的性質以及氫化程度決定。如果用末端為甲基的分子修飾(0001)二氧化硅表面,可以進一步減弱二氧化硅表面氧原子對石墨烯電子學特性的影響,從而提高在二氧化硅表面石墨烯的載流子遷移率。此外,當石墨烯物理吸附在二氧化硅表面上時,垂直於石墨烯和二氧化硅界面的外加電場可以調製石墨烯和二氧化硅表面的電荷轉移。這一效應可以增強雙層石墨烯之間的電場,從而有效改變雙層石墨烯的能帶結構。我們的結果有助於更好的地認識和理解石墨烯吸附在二氧化硅表面所表現的實驗現象。 / 基於以上兩個結論,我們用三亚苯合成了高質量的單層石墨烯,並對其在普通二氧化硅表面上以及十八烷基鏈三甲氧基硅烷所修飾的二氧化硅表面上,所體現出的不同電子學性質和散射機理進行了詳細研究。用三亚苯作為石墨烯的生長源可以避免傳統氣象化學沉積方法在初期成核過程中所產生的缺陷,從而得到高質量的石墨烯。電學測量表明,石墨烯在普通二氧化硅表面上的載流子遷移率約為5090 cm²V⁻¹s⁻¹。而在十八烷基鏈三甲氧基硅烷所修飾的二氧化硅表面上,其遷移率可以提高到大約9080 cm²V⁻¹s⁻¹。此外,通過這兩種不同結構的電子器件進行定量的分析和對比,我們發現在室溫下,普通二氧化硅表面上的石墨烯電子器件的平均自由程主要由電離雜質所引起的長程散射所決定,電離雜質散射源密度約為5.34×10¹¹ cm⁻²。而對於十八烷基鏈三甲氧基硅烷所修飾的二氧化硅表面上的石墨烯電子器件的平均自由程主要由甲基以及石墨烯中的缺陷和晶界所引起的共振散射所決定,共振散射源密度為9.77×10¹° cm⁻²。我們的研究結果有助於揭示通過界面修飾來提升石墨烯電子器件性能的內在原理。 / 最後, 我們對單層石墨烯和硅烯封裝在金剛石薄膜和硅薄膜結構的電子學性質,以及其隨壓強的變化,進行了系統的理論研究。結果表明,當單層石墨烯和硅烯封裝在金剛石薄膜和硅薄膜中時,通過改變壓強和堆疊結構,單層石墨烯和硅烯在狄拉克點處的能隙和電子有效質量可以被有效地調製。電子有效質量和壓強成正比。硅烯的能隙對於壓強的變化比石墨烯更加敏感。並且異質封裝結構比同質封裝結構更有利於調製石墨烯和硅烯在狄拉克點處的能隙和電子有效質量。利用封裝技術和改變壓強的方法,石墨烯和硅烯的蜂窩狀結構不會被破壞,所以其小的載流子有效質量和高的載流子遷移率將會保持。所以對於構造高性能的納米電子學器件,這種方法有明顯的應用前景。 / Group IV two Dimensional Semiconductor Materials, such as graphene, silicene and so on, composed of an atomically thin layer of carbon and silicon atoms arranged in a honeycomb lattice, have received considerable attention, as their extraordinary electronic, mechanical, optical, and thermal properties arise from their unique 2D energy dispersions, since their representive, graphene, experimentally discovered in 2004. Reliable fabrication of high-quality graphene and silicene two dimensional layers and understanding the properties of interface between graphene or silicene two dimensional layers and substrates play an indispensable role for realizing their potential applications in nanoelectronics. This thesis attempts to paint a clear picture about the growth mechanism of graphene from Polycyclic aromatic hydrocarbons (PAHs) on Cu(111) surface and interfacial electronic properties of graphene and silicene to promote application of Two Dimensional Group IV Semiconductor and shed light on rational design of functional devices. / Firstly, in order to obtain insights into the reaction mechanism, the bottom-up growth of graphene from PAHs on Cu(111) surface has been systematically analyzed by means of large-scale ab initio simulation in a density functional theory (DFT) framework. Theoretical calculation shows that the underlying growth mechanism, which mainly involves surface-mediated nucleation process of dehydrogenated PAHs rather than segregation or precipitation process of small carbon clusters decomposed from the precursors. The quality of the synthesized graphene sheets and minimum growth temperature strongly depends on the structures of PAHs as well as the molecular activities. Increasing the growth temperature will augment the activity of carbon clusters, so as to increase the probability in formation of prefect graphene sheets. Coronene, having 6-fold rotational symmetry and the same lattice as graphene, has the highest probability in forming high quality graphene, especially at relatively low growth temperature. / Secondly, the electronic properties of graphene supported by (0001) SiO₂ surface are theoretically studied using the density functional theory. It is found that the electronic attributes of graphene on (0001) SiO₂ strongly depend on the underlying SiO₂ surface properties and the percentage of hydrogen-passivation. By applying methyl to passivate oxygen-terminated (0001) SiO₂ surface one can further reduce the interaction between the graphene sheet and oxygen-terminated surface. This can improve the charge carrier mobility of graphene supported by SiO₂ substrate and reduce the influence by residual interfacial molecules. In addition, the external electric field modulates the charge transfer between graphene and the SiO₂ surface, when graphene layers are physisorbed on the oxide surface. This phenomenon will enhance the built-in electric field of bilayer graphene so as to effectively modify its band structure. Our results shed light on a better atomistic understanding of the recent experiments on graphene supported by SiO₂. / Based on the above two conclusions, the graphene/substrate interface properties and engineering of bottom-gated, large-scale triphenylene-derived graphene transistors by applying octadecyltrimethoxysilane (OTMS) self-assembled monolayers (SAM) onto the gate dielectric surface are studied. To meet the challenge that the isolated carbon monomers are likely to form defective carbon clusters with pentagons, at the initial stage of CVD graphene growth, triphenylene (C₁₈H₁₂) (pentagon-free with only C and H) was used as the solid precursor for high-quality and large-scale graphene synthesis. Transport measurements performed on back-gated graphene field-effect transistors (GFETs) with large channel lengths (~25 μm) show a carrier mobility up to ~5090 cm²V⁻¹s⁻¹ on SiO₂/Si substrate at room temperature under vacuum. Furthermore we show that in virtue of the ultrasmooth SAM surface and reduced interfacial impurity scattering as well as attenuated surface polar phonon scattering, the GFET carrier mobility on octadecyltrimethoxysilane (OTMS) passiviated SiO₂ surface is consistently improved up to ~9080 cm²V⁻¹s⁻¹, whose graphene active layer has been grown with triphenylene precursor. This makes it promising for practical applications. In addition, in comparison with the devices without interface engineering, triphenylene-derived GFETs with OTMS-SAM modified SiO₂/Si substrate exhibit the marked carrier-density-dependent field-effect mobility. Quantitative analyses reveal that at ambient temperature, the predominant scattering sources affect the carrier mean free path for graphene devices on bare SiO₂ substrates and for those on OTMS passivated SiO₂ substrates are charged impurity induced long-range scattering (~5.34×10¹¹ cm⁻² in carrier density) and resonant scattering (short-range scattering ~9.77×10¹° cm⁻² carrier in density), respectively. Our findings elucidate the underlying dominate factors for achieving the significantly improved device performance of GFETs at room temperature. / Finally, by exploiting first-principles calculations, we show that the band gap and electron effective mass (EEM) of various confined graphene and silicene (D-X/G/H-D, Si-X/S/H-Si and D-X/S/H-D) can be effectively modulated by tuning the pressure (interlayer spacing) and stacking arrangement. The electron effective mass (EEM) is proportional to the band gap. The band gap of confined silicene is more sensitive to pressure than that of confined graphene. Moreover, heterogeneous interface would be beneficial to effectively control the band gap and carrier effective masses of confined graphene and silicene. Using the confined technique and pressure, the integrity of the honeycomb structure of graphene and silicene will be preserved, so the small effective masses and high mobility of graphene and silicene will remain during compression. The tunable band gap and high carrier mobility of the sandwich structures are promising for building high-performance nanodevices. / The aforementioned four sub-topics form the mechanistic understanding of graphene growth by PAHs and interfacial electronic properties of graphene and silicene down to the molecular level. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Kun. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Abstracts also in Chinese. / Abstract --- p.II / 博士學位論文摘要: --- p.VI / Acknowledgements --- p.X / Chapter Chapter 1 --- Introduction to Growth Methods and Electronic Properties of Graphene and Silicene --- p.1 / Chapter 1.1 --- Electronic Properties of Graphene --- p.2 / Chapter 1.1.1 --- The Direct Lattice and the Reciprocal Lattice --- p.2 / Chapter 1.1.2 --- Electronic Band Structure --- p.6 / Chapter 1.1.3 --- Tight-Binding Energy Dispersion --- p.7 / Chapter 1.1.4 --- Massless Dirac Fermions --- p.15 / Chapter 1.1.5 --- Carrier Density and Effective Mass --- p.21 / Chapter 1.1.6 --- The Tight-Binding Model of Bilayer Graphene --- p.24 / Chapter 1.1.7 --- The Two-Component Hamiltonian of Bilayer Graphene --- p.29 / Chapter 1.1.8 --- Trigonal Warping in Graphene --- p.32 / Chapter 1.1.9 --- Tunable Band Gap in Bilayer Graphene --- p.36 / Chapter 1.2 --- Synthesis of Graphene --- p.38 / Chapter 1.2.1 --- Exfoliation and Cleavage --- p.39 / Chapter 1.2.2 --- Thermal Decomposition of SiC --- p.40 / Chapter 1.2.3 --- Chemical Vapor Deposition of Graphene --- p.42 / Chapter 1.3 --- Electronic Properties at Graphene/Substrate Interface --- p.55 / Chapter 1.3.1 --- Graphene on SiO₂/Si Substrates --- p.56 / Chapter 1.3.2 --- Graphene on Hexagonal Boron Nitride (h-BN) --- p.60 / Chapter 1.3.3 --- Graphene on Organic Self-Assembled Monolayer (SAM) Passivation of Bared SiO₂/Si --- p.61 / Chapter 1.4 --- Synthesis and Electronic Properties of Silicene --- p.63 / Chapter 1.4.1 --- Synthesis of Silicene --- p.64 / Chapter 1.4.2 --- Electronic Properties of Silicene --- p.65 / Chapter References --- p.67 / Chapter Chapter 2 --- Introduction to Density Functional Theory --- p.75 / Chapter 2.1 --- Many-Particle Hamiltonian --- p.75 / Chapter 2.2 --- Born-Oppenheimer Approximation --- p.76 / Chapter 2.3 --- Hartree-Fock Method --- p.77 / Chapter 2.4 --- Density Functional Theory (DFT) --- p.77 / Chapter 2.4.1 --- Hohenberg-Kohn Theorems --- p.77 / Chapter 2.4.2 --- Kohn-Sham Method --- p.79 / Chapter 2.4.3 --- Kohn-Sham Equation --- p.80 / Chapter 2.4.4 --- Solution of Kohn-Sham Equation --- p.80 / Chapter 2.5 --- Electron Density Approximation --- p.80 / Chapter 2.5.1 --- Local Density Approximation (LDA) --- p.80 / Chapter 2.5.2 --- Generalized Gradient Approximation (GGA) --- p.82 / Chapter 2.5.3 --- Hybrid Functionals --- p.82 / Chapter 2.6 --- Plane Waves Expansion --- p.83 / Chapter 2.7 --- Pseudopotentials --- p.84 / Chapter 2.7.1 --- Ultrasoft Pseudopotentials (USPP) --- p.86 / Chapter 2.7.2 --- Projector Augmented Wave Potentials (PAW) --- p.87 / Chapter 2.8 --- DFT+U --- p.88 / Chapter References --- p.89 / Chapter Chapter 3 --- ab initio Study of Growth Mechanism of Graphene from Polycyclic Aromatic Hydrocarbons --- p.91 / Chapter 3.1 --- Introduction --- p.91 / Chapter 3.2 --- Experimental Results --- p.93 / Chapter 3.3 --- Calculation Method --- p.94 / Chapter 3.4 --- Calculation Results and Discussion --- p.96 / Chapter 3.5 --- Conclusion --- p.109 / Chapter References --- p.109 / Chapter Chapter 4 --- Electronic Properties of Graphene Altered by Substrate Surface Chemistry and Externally Applied Electric Field --- p.113 / Chapter 4.1 --- Introduction --- p.113 / Chapter 4.2 --- Calculation Method --- p.115 / Chapter 4.3 --- Results and Discussion --- p.116 / Chapter 4.4 --- Conclusions --- p.133 / Chapter References --- p.134 / Chapter Chapter 5 --- High Performance Devices Based on Large-Scale Triphenylene Derived Graphene and Interface Engineering --- p.138 / Chapter 5.1 --- Introduction --- p.138 / Chapter 5.2 --- Experimental Section --- p.140 / Chapter 5.3 --- Results and Discussion --- p.144 / Chapter 5.4 --- Conclusion --- p.163 / Chapter References --- p.164 / Chapter Chapter 6 --- Controllable Modulation of Electronic Properties of Graphene and Silicene by Interface Engineering and Pressure --- p.169 / Chapter 6.1 --- Introduction --- p.169 / Chapter 6.2 --- Modeling and Methods --- p.171 / Chapter 6.3 --- Results and Discussion --- p.174 / Chapter 6.4 --- Conclutions --- p.200 / Chapter References --- p.201 / Chapter Chapter 7 --- Conclusions and Future Plans --- p.204 / Chapter 7.1 --- Conclusions --- p.204 / Chapter 7.2 --- Future Plans --- p.206 / List of Publications during Ph.D. Study --- p.207

Page generated in 0.0634 seconds