• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Many - Body Interaction Effects In Two - Dimensional Materials

Sengupta, Sanghita 01 January 2018 (has links)
In this talk, I will discuss three problems related to the novel physics of two-dimensional quantum materials such as graphene, group-VI dichalcogenides family (TMDCs viz. MoS2 , WS2, MoSe2 , etc) and Silicene-Germanene class of materials. The first problem poses a simple question - how do the quantum excitations in a graphene membrane affect adsorption? Using the tools of diagrammatic perturbation theory, I will derive the scattering rates of a neutral atom on a graphene membrane. I will show how this seemingly naive model can serve as a non-relativistic condensed matter analogue of the infamous infrared problem in Quantum Electrodynamics. In the second problem, I will move from the framework of a single atom adsorption to a collective behavior of fluids near graphene and TMDC - interfaces. Following the seminal work of Dzyaloshinskii-Lifshitz-Pitaevskii on van der Waals interactions, I will develop a theory of liquid film growth on 2 dimensional surfaces. Additionally, I will report an exotic phenomenon of critical wetting instability which is a result of the dielectric engineering and discuss experimental and technological implications. Finally, the last problem will see the introduction of spin-orbit coupling effects in the 2D topological insulator family of Silicene-Germanene class of materials. I will present a unified theory for their in-plane magnetic field response leading to "anomalous", i.e electron interaction-dependent spin-flip transition moment. Can this correction to spin-flip transition moment be measured? I will propose magneto-optical experimental techniques that can probe the effects.

Page generated in 0.0788 seconds