• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 840
  • 204
  • 133
  • 102
  • 42
  • 12
  • 12
  • 8
  • 8
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 1739
  • 301
  • 288
  • 281
  • 227
  • 214
  • 205
  • 186
  • 174
  • 148
  • 141
  • 129
  • 121
  • 116
  • 113
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Scanning Tunneling Microscopy Studies of Adsorbates on Two-Dimensional Materials

Tjung, Steven Jason 10 August 2018 (has links)
No description available.
322

Conductance Modulation in Bilayer Graphene Nanoribbons

Paulla, Kirti Kant 29 September 2009 (has links)
No description available.
323

GROWTH AND CHARACTERIZATION OF CARBON NANOMATERIALS

Patel, Jay 16 August 2011 (has links)
No description available.
324

Electronic and Structural Properties of Silicene and Graphene Layered Structures

Benasutti, Patrick B. 21 September 2012 (has links)
No description available.
325

Synthesis, characterization of graphene and the application of graphene carbon nanotube composite in fabricating electrodes

Zhang, Meixi 23 October 2015 (has links)
No description available.
326

Sub-Lithographic Patterning of Ultra-Dense Graphene Nanoribbon Arrays

Li, Ke 28 September 2009 (has links)
No description available.
327

Topics in the theory of excitations in granular matter

Tiwari, Rakesh P. 15 January 2010 (has links)
No description available.
328

High Performance Broadband Photodetectors Based on Graphene/Semiconductor Heterostructures

Wang, Yifei 15 April 2022 (has links)
Graphene, a monolayer of carbon atoms, has gained prominence to augment existing chip-scale photonic and optoelectronic applications, especially for sensing in optical radiation, owing to its distinctive electrical properties and bandgap as well as its atomically thin profile. As a building block of photodetection, graphene has been co-integrated with mature silicon technology to realize the on-chip, high-performance photo-detecting platforms with broad spectral response from the deep-ultraviolet (UV) to the mid-infrared (MIR) regime. The recent state-of-the-art graphene-based photodetectors utilizing the combination of colloidal quantum dots (QDs) and graphene have been intensively studied, where QDs function as the absorber and the role of graphene is as a fast carrier recirculating channel. With such a configuration, an ultrahigh sensitivity can be achieved on account of the photogating mechanism; however, the response time is slow and limited to the millisecond-to-second range. To achieve balance between high sensitivity and fast response time, we have demonstrated a new photodetector that is based on graphene/two-dimensional heterostructures. The homogeneous thickness and the large contact of the heterostructure give rise to fast carrier transporting between the thin absorber layer and the graphene, leading to a fast response time. This thesis carefully investigates the optimization of fabrication as well as optoelectronic characterization of photodetectors based on graphene/semiconductor heterostructures field-effect transistors (GFETs). GFETs with different architectures were demonstrated and systematically studied under optical illumination ranging from deep-UV to MIR at varying optical powers. Noise behaviors have been studied under different device parameters such as device structure, area and gate-bias. Results show that the flicker noise of graphene-based devices can be explained by the McWhorter model in which the fluctuation of carrier numbers is the dominant process of noise in low frequencies; thus, it can be scaled down by reducing the number of introduced charged carriers with optimized fabrication. Besides, the impact of absorber on top of graphene and the bottom substrate has been comprehensively explored through various experimental techniques including current-voltage (IV), photo-response dynamics, and noise characterization measurements. With our configuration, the high sensitivity and fast response time of photodetectors can be obtained at the same time. In addition to this, the study of the bottom substrate with different doping levels suggests a concept of dual-photogating effect which is induced by the top absorbent material and the photoionization of the doped silicon substrate. In summary, this thesis showcases novel device architecture and fabrication procedures of GFETs photodetectors, optimizes device structure, quantifies the performance and evaluates the effect of various absorbent materials and substrate. It provides insight into the improvement of possible routes to achieve a broadband photo-detecting system with higher sensitivity, faster response time and lower noise level. / Doctor of Philosophy / The rapid expansion of networked devices and the development of the Internet of Things have given rise to an internet traffic and data explosion. Since conventional electrical interconnects are unable to rise to the occasion of the ever-growing demands of information technology and communication networking, next-generation alternative interconnects with higher performance and lower loss are attractive alternatives as the chip-scale optical interconnection. Among various optical interconnects, photodetectors play significant roles by converting optical input into electrical signal output. Sensing of light has a great impact in daily applications such as telecommunications, night vision, biomedical imaging and biochemical sensing. Graphene, belonging to the class of 2-dimensional materials, shows enormous potential as a building block of photodetection owing to its outstanding optical and electrical properties. One possible route to develop a sensitive and fast-operating on-chip photodetector is to integrate graphene into silicon photonics platforms since the latter has been widely studied and driven to maturity. In this thesis, graphene-based photodetectors with novel architectures have been fabricated, demonstrated and systematically investigated. Various measurements have been taken to quantify the performance of photodetectors in a wide detecting range from deep ultraviolet to mid-infrared.
329

Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design

Hughes, Zak, Walsh, T.R. 24 October 2017 (has links)
Yes / We report on the predicted structural disruption of an adenosine-binding DNA aptamer adsorbed via noncovalent interactions on aqueous graphene. The use of surface-adsorbed biorecognition elements on device substrates is needed for integration in nanofluidic sensing platforms. Upon analyte binding, the conformational change in the adsorbed aptamer may perturb the surface properties, which is essential for the signal generation mechanism in the sensor. However, at present, these graphene-adsorbed aptamer structure(s) are unknown, and are challenging to experimentally elucidate. Here we use molecular dynamics simulations to investigate the structure and analyte-binding properties of this aptamer, in the presence and absence of adenosine, both free in solution and adsorbed at the aqueous graphene interface. We predict this aptamer to support a variety of stable binding modes, with direct base−graphene contact arising from regions located in the terminal bases, the centrally located binding pockets, and the distal loop region. Considerable retention of the in-solution aptamer structure in the adsorbed state indicates that strong intra-aptamer interactions compete with the graphene−aptamer interactions. However, in some adsorbed configurations the analyte adenosines detach from the binding pockets, facilitated by strong adenosine−graphene interactions.
330

Adsorption of DNA Fragments at Aqueous Graphite and Au(111) via Integration of Experiment and Simulation

Hughes, Zak, Gang, W., Drew, K.L.M., Ciacchi, L.C., Walsh, T.R. 08 September 2017 (has links)
Yes / We combine single molecule force spectroscopy measurements with all-atom metadynamics simulations to investigate the cross-materials binding strength trends of DNA fragments adsorbed at the aqueous graphite C(0001) and Au(111) interfaces. Our simulations predict this adsorption at the level of the nucleobase, nucleoside, and nucleotide. We find that despite challenges in making clear, careful connections between the experimental and simulation data, reasonable consistency between the binding trends between the two approaches and two substrates was evident. On C(0001), our simulations predict a binding trend of dG > dA ≈ dT > dC, which broadly aligns with the experimental trend. On Au(111), the simulation-based binding strength trends reveal stronger adsorption for the purines relative to the pyrimadines, with dG ≈ dA > dT ≈ dC. Moreover, our simulations provide structural insights into the origins of the similarities and differences in adsorption of the nucleic acid fragments at the two interfaces. In particular, our simulation data offer an explanation for the differences observed in the relative binding trend between adenosine and guanine on the two substrates.

Page generated in 0.0724 seconds