• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à une théorie de Morse-Novikov à paramètre

Moraga Ferrandiz, Carlos 12 October 2012 (has links) (PDF)
Le cadre de cette étude est une variété fermée de dimension au moins six qui est munie d'une classe de cohomologie de De Rham non-nulle. L'objectif de la thèse est de créer des outils pour répondre au problème de savoir si deux 1-formes fermées non-singulières (sans zéro) dans la classe fixée sont toujours isotopes. La réponse générale à la question est non, et une obstruction de type K-théorique est attendue. Il est toujours possible de relier deux 1-formes fermées non singulières par un chemin qui reste dans la classe de cohomologie ; l'isotopie des extrêmes du chemin équivaut à déformer le chemin par une homotopie relative en un autre constitué de 1-formes non-singulières. On introduit deux sortes de pseudo-gradients pour chaque nombre L positif : ceux avec une liaison L-élémentaire et ceux que nous appelons L-transverses. Ils forment une classe de champs de vecteurs adaptés aux 1-formes qui permettent de faire une lecture algébrique associée au chemin. Cette lecture est analogue à celle qui est faite dans la théorie de Hatcher-Wagoner qui traitait le problème d'isotopie pour les fonctions à valeurs réelles sans point critique. On réussit à trouver un nombre L assez grand pour déformer un chemin de 1-formes à deux indices critiques en un autre chemin muni d'un équipement L-transverse qui est sous forme normale. Les zéros d'un tel chemin de 1-formes qui sont nés ensemble, s'éliminent ensemble et de plus le graphique de Cerf-Novikov associé se ferme : la lecture algébrique citée appartient à un certain K_2, ce qui est au point de départ de la définition d'une obstruction à l'isotopie des 1-formes fermées non-singulières.

Page generated in 0.0782 seconds