• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transferring ascochyta blight resistance from Lathyrus sp. into field pea (Pisum sativum L.) via protoplast fusion (somatic hybridisation)

McCutchan, Jennifer Susan Unknown Date (has links)
Field pea (Pisum sativum L.) is highly susceptible to ascochyta blight, primarily caused by the pathogen Mycosphaerella pinodes (Berk. & Blox.) Vestergr. Grasspea (Lathyrus sativus L.) has been reported to possess a moderate level of resistance to ascochyta blight caused by M. pinodes. The work reported in this thesis aimed to develop the various techniques that would be required to transfer ascochyta blight resistance from grasspea into field pea via somatic hybridisation. This thesis also assesses the feasibility of achieving this goal. Field pea shoot cultures were established on hormone-free MS medium, and a protoplast isolation protocol developed for both species. Grasspea shoot cultures were established on both RL and SSB8 medium. Friable grasspea callus was achieved on media supplemented with 2,4-D in the range 4.523 µM, whereas kinetin tested at any concentration did not appear to influence callus growth. A suspension culture of grasspea was developed for the first time, in B5 medium supplemented with 4.5 µM 2,4-D and 0.5 µM kinetin. Grasspea protoplasts were isolated from both in vitro seedlings and suspension cultures. Protocols for hybrid shoot culture on KM8p medium were developed via organogenesis and somatic embryogenesis.
2

Transferring ascochyta blight resistance from Lathyrus sp. into field pea (Pisum sativum L.) via protoplast fusion (somatic hybridisation)

McCutchan, Jennifer Susan Unknown Date (has links)
Field pea (Pisum sativum L.) is highly susceptible to ascochyta blight, primarily caused by the pathogen Mycosphaerella pinodes (Berk. & Blox.) Vestergr. Grasspea (Lathyrus sativus L.) has been reported to possess a moderate level of resistance to ascochyta blight caused by M. pinodes. The work reported in this thesis aimed to develop the various techniques that would be required to transfer ascochyta blight resistance from grasspea into field pea via somatic hybridisation. This thesis also assesses the feasibility of achieving this goal. Field pea shoot cultures were established on hormone-free MS medium, and a protoplast isolation protocol developed for both species. Grasspea shoot cultures were established on both RL and SSB8 medium. Friable grasspea callus was achieved on media supplemented with 2,4-D in the range 4.523 µM, whereas kinetin tested at any concentration did not appear to influence callus growth. A suspension culture of grasspea was developed for the first time, in B5 medium supplemented with 4.5 µM 2,4-D and 0.5 µM kinetin. Grasspea protoplasts were isolated from both in vitro seedlings and suspension cultures. Protocols for hybrid shoot culture on KM8p medium were developed via organogenesis and somatic embryogenesis.
3

Inheritance and linkage of morphological, isozyme and RAPD markers in grasspea

Chowdhury, Mahboob Alam 01 January 1997 (has links)
Experiments were conducted to determine the outcrossing rate, the inheritance of markers and establish a basic linkage map in grasspea, <i> Lathyrus sativus </i>L. The outcrossing rate in a white-flowered line of grasspea ranged from 1.7 to 2.7% among eight combinations of gene frequency and location. The outcrossing rate in this study (2.2 ± 0.7%) suggests that individual lines of grasspea should be maintained in isolation to maintain their genetic integrity. Inheritance and linkage were determined for one morphological, 11 isozyme and 72 RAPD markers in five F<sub>2</sub> populations (all RAPD markers were in one F<sub>2</sub> population). The inheritance of flower colour was monogenic with colour dominant over white. The isozymes, ACO-1, ACO-2, AAT-1, AAT-2, EST-6, FDH, LAP-1, PGD-2, SKDH and TPI-1, were codominantly expressed with monogenic inheritance. The isozymes LAP-1 and PGD-2 segregated in a non-Mendelian ratios in the crosses PI 426891.1.3 x PI 283564c.3.2 and PI 426891.1 x PI 172930.4, respectively. The isozymeEST-3 was monogenically inherited and dominantly expressed. Most RAPD markers segregated in a 3:1 ratio. Marker UBC368<sub>425/655</sub> segregated in a co-dominant fashion. The RAPD markers UBC304<sub>831</sub>, UBC304<sub>964</sub>, UBC308<sub>990</sub>, UBC322<sub>1432</sub>, UBC328<sub>831</sub>, UBC332<sub>1118</sub>, UBC3321<sub>1581</sub>, UBC333<sub>617</sub>, UBC349<sub>752<?sub>, UBC365<sub>1013</sub> and UBC388<sub>459</sub> showed distorted segregation. In two F<sub>2</sub> populations, PI 283564c.3 x PI 426885.2 and PI 358601.5 x PI 173714.5, a linkage between AAT-2 and SKDH was reconfirmed. In the cross PI 426891.1.3 x PI 283564c.3.2, one morphological, three isozyme and 71 RAPD markers were mapped resulting in the delineation of 14 linkage groups including 69 markers (1 morphological, 3 isozyme and 65 RAPD markers). The total genome length covered by these 75 markers (69 linked and six unlinked) was about 864 cM. Considering cost, simplicity and abundance, RAPD analysis was more efficient than isozyme analysis in developing linkage map.

Page generated in 0.0351 seconds