1 |
Studium slinování nanočásticových keramických materiálů / Study of Sintering of Nanoceramic MaterialsDobšák, Petr January 2010 (has links)
The topic of the Ph.D. thesis was focused on the process of sintering alumina and zirconia ceramic materials with the aim to compare kinetics of sintering sub-micro and nanoparticle systems. Zirconia ceramic powders stabilized by different amount of yttria addition in the concentration range of 0 – 8 mol% were used. The different crystal structure (secured by yttria stabilization) of zirconia, as found, did not play statistically proven role in the process of zirconia sintering. The possible influence was covered by other major factors as particle size and green body structure, which does affect sintering in general. According to the Herrings law, the formula predicting sintering temperature of materials with different particle size was defined. The predicted sintering temperatures were in good correlation with the experimental data for zirconia ceramic materials prepared from both, coarser submicrometer, and also nanometer powders. In case of alumina ceramics the predicted and experimentally observed sintering temperature values did not match very well. Mainly the nanoparticle alumina materials real sintering temperature values were markedly higher than predicted. The reason was, as shown in the work, strong agglomeration of the powders and strong irregularities of particle shape. The major role of green body microstructure in the sintering process was confirmed. The final density of ceramic materials was growing in spite of sintering temperature, which was decreasing together with pore - particle size ratio (materials with similar particle size were compared). Sintering temperature was increasing together with growing size of pores trapped in the green body structure. Clear message received from the above mentioned results was the importance of elimination of stable pores with high coordination number out off the green body microstructure during shaping ceramic green parts. Same sintering kinetics model was successfully applied on the sintering process of submicro- and also nanometer zirconia ceramics. Activation energy of nanometer zirconia was notably lower in comparison to submicrometer material. For the sintering of nanoparticle zirconia was typical so called “zero stage” of sintering, clearly visible on kinetic curves. It was found out, that processes running in zirconia “green” material during zero stage of sintering are heat activated and their activation energy was determined. Pores of submicrometer zirconia were growing in an open porosity stage of sintering just a slightly (1.3 times) compared to the nanoparticle zirconia, where the growth was much higher (5.5 times of the initial pore diameter). This difference was most probably caused by preferential sintering of agglomerates within the green bodies and by particle rearrangement processes which appears in the zero stage of sintering of nanoparticular ceramics. The technology of preparation of bulk dense ytria stabilized zirconia nanomaterial with high relative density of 99.6 % t.d. and average grain size 65nm was developed within the thesis research.
|
2 |
Design and Testing of a Top Mask Projection Ceramic Stereolithography System for Ceramic Part ManufacturingDe Caussin, Dylan Robert 01 June 2016 (has links) (PDF)
Ceramic manufacturing is an expensive process with long lead times between
the initial design and final manufactured part. This limits the use of ceramic as a viable material unless there is a large project budget or high production volume associated with the part. Ceramic stereolithography is an alternative to producing low cost parts through the mixing of a photo curable resin and ceramic particles. This is an additive manufacturing process in which each layer is built upon the previous to produce a green body that can be sintered for a fully dense ceramic part.
This thesis introduces a new approach to ceramic stereolithography with a top mask projection light source which is much more economical compared to current vector scanning methods. The research goes through the design and development of a stereolithography printer prototype capable of handling ceramics and the testing of different mixtures to provide the best printing results with varying viscosities. The initial testing of this printer has created a starting point for top mask projection as an economical alternative to current ceramic manufacturing techniques.
|
Page generated in 0.0719 seconds