• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 16
  • 16
  • 15
  • 15
  • 12
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Barriers and drivers to the implementation of the "clean development mechanism" within the Nelson Mandela Bay Municipality : a case study /

Wilson, Craig Michael. January 2007 (has links)
Thesis (M.B.A. (Rhodes Investec Business School)) - Rhodes University, 2007. / A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Business Administration (MBA)
42

Preparação e caracterização de membranas cerâmicas compostas tubulares para aplicação na separação de gases

Bisoto, Tatiana 25 September 2014 (has links)
Este trabalho tem como objetivo preparar membranas compostas de α-alumina recobertas com paládio usando a técnica de deposição química electroless plating associada ao método sol-gel. Foram realizados tratamentos térmicos a 1450°C nos suportes cerâmicos em 6, 12, 18, 24 e 30 h visando verificar a influência do tempo na porosidade do mesmo. Foram preparadas membranas compostas, alumina-Pd com uma, duas e três camadas de paládio na superfície externa do suporte cerâmico, em que o suporte e as membranas foram caracterizados por: análise morfológica realizada por Microscopia Eletrônica de Varredura (MEV) e Microscopia Eletrônica de Varredura de Emissão de Campo (FESEM), porosidade avaliada pelo Método de Brunauer, Emmet e Teller (BET), Método de Barret-Joyner-Halenda (BJH) e porosimetria de mercúrio, quantificação de paládio em solução por Espectrometria de Massa com plasma indutivamente acoplado (ICP-MS) e a permeabilidade e seletividade dos gases mensurada a partir de um equipamento em escala de bancada. O aumento do tempo durante a sinterização não promoveu mudanças significativas na porosidade do suporte, mostrando que o tempo de 6 h de tratamento térmico é suficiente para atingir a menor distribuição de tamanho de poro do material. A formação da camada de paládio foi realizada sem e com a associação do método sol-gel, apresentando uma camada mais homogênea com o uso do método, no entanto a análise de ICP-MS indicou maior quantidade de metal paládio na deposição electroless plating. A análise morfológica indicou espaços vazios menores de acordo com o número de camadas formadas. O suporte cerâmico sem e com camada de paládio apresenta variação na permeabilidade aos gases N2, CH4 e CO2 nas pressões de 100 a 400 kPa e quanto mais espessa a camada de paládio formada, menor é a permeabilidade dos gases. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2015-02-23T18:54:16Z No. of bitstreams: 1 Dissertacao Tatiana Bisoto.pdf: 546380 bytes, checksum: b684b58eaa3e2af8b355719394be7208 (MD5) / Made available in DSpace on 2015-02-23T18:54:16Z (GMT). No. of bitstreams: 1 Dissertacao Tatiana Bisoto.pdf: 546380 bytes, checksum: b684b58eaa3e2af8b355719394be7208 (MD5) / Within this context, this work aims to prepare membranes composed of α-alumina coated with palladium using the electroless plating technique associated with the sol-gel method. To achieve the objectives of the paper, analyzes of porosity of the ceramic support with and without heat treatment of 1450°C for 6; 12; 18; 24 and 30 h, the formation of one, two and three layers of palladium on the external surface of the ceramic support, the effect of the sol-gel method, the chemical and physical properties, permeability and selectivity of the gases were performed. Morphological analysis were performed by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscope (FESEM), the membrane porosity was evaluated by the Brunauer, Emmet and Teller (BET) theory, Barret-Joyner-Halenda (BJH) method and by mercury porosimetry, the palladium quantification in solution was given by mass spectrometry with inductively coupled plasma (ICP-MS) analysis and gas permeability and selectivity were measured by a bench scale equipment. The time increase during the sinterization did not promote representing changes in the support porosity, which shows that the 6 h time of heat treatment is sufficient to achieve the lowest porosity of the material. The palladium layer formation was realized without and with the combination of the sol-gel method, presenting a more homogeneous layer with the use of the method. However, the ICP-MS analysis indicated a greater amount of palladium deposition without sol-gel method. The morphological analysis showed smaller empty spaces according to the number of layers formed. The ceramic support without and with palladium layer showed variation in permeability to N2, CH4 and CO2 gases at pressures of 100 to 400 kPa and the higher the palladium layer formed, the smaller the gas permeability
43

Preparação e caracterização de membranas cerâmicas compostas tubulares para aplicação na separação de gases

Bisoto, Tatiana 25 September 2014 (has links)
Este trabalho tem como objetivo preparar membranas compostas de α-alumina recobertas com paládio usando a técnica de deposição química electroless plating associada ao método sol-gel. Foram realizados tratamentos térmicos a 1450°C nos suportes cerâmicos em 6, 12, 18, 24 e 30 h visando verificar a influência do tempo na porosidade do mesmo. Foram preparadas membranas compostas, alumina-Pd com uma, duas e três camadas de paládio na superfície externa do suporte cerâmico, em que o suporte e as membranas foram caracterizados por: análise morfológica realizada por Microscopia Eletrônica de Varredura (MEV) e Microscopia Eletrônica de Varredura de Emissão de Campo (FESEM), porosidade avaliada pelo Método de Brunauer, Emmet e Teller (BET), Método de Barret-Joyner-Halenda (BJH) e porosimetria de mercúrio, quantificação de paládio em solução por Espectrometria de Massa com plasma indutivamente acoplado (ICP-MS) e a permeabilidade e seletividade dos gases mensurada a partir de um equipamento em escala de bancada. O aumento do tempo durante a sinterização não promoveu mudanças significativas na porosidade do suporte, mostrando que o tempo de 6 h de tratamento térmico é suficiente para atingir a menor distribuição de tamanho de poro do material. A formação da camada de paládio foi realizada sem e com a associação do método sol-gel, apresentando uma camada mais homogênea com o uso do método, no entanto a análise de ICP-MS indicou maior quantidade de metal paládio na deposição electroless plating. A análise morfológica indicou espaços vazios menores de acordo com o número de camadas formadas. O suporte cerâmico sem e com camada de paládio apresenta variação na permeabilidade aos gases N2, CH4 e CO2 nas pressões de 100 a 400 kPa e quanto mais espessa a camada de paládio formada, menor é a permeabilidade dos gases. / Within this context, this work aims to prepare membranes composed of α-alumina coated with palladium using the electroless plating technique associated with the sol-gel method. To achieve the objectives of the paper, analyzes of porosity of the ceramic support with and without heat treatment of 1450°C for 6; 12; 18; 24 and 30 h, the formation of one, two and three layers of palladium on the external surface of the ceramic support, the effect of the sol-gel method, the chemical and physical properties, permeability and selectivity of the gases were performed. Morphological analysis were performed by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscope (FESEM), the membrane porosity was evaluated by the Brunauer, Emmet and Teller (BET) theory, Barret-Joyner-Halenda (BJH) method and by mercury porosimetry, the palladium quantification in solution was given by mass spectrometry with inductively coupled plasma (ICP-MS) analysis and gas permeability and selectivity were measured by a bench scale equipment. The time increase during the sinterization did not promote representing changes in the support porosity, which shows that the 6 h time of heat treatment is sufficient to achieve the lowest porosity of the material. The palladium layer formation was realized without and with the combination of the sol-gel method, presenting a more homogeneous layer with the use of the method. However, the ICP-MS analysis indicated a greater amount of palladium deposition without sol-gel method. The morphological analysis showed smaller empty spaces according to the number of layers formed. The ceramic support without and with palladium layer showed variation in permeability to N2, CH4 and CO2 gases at pressures of 100 to 400 kPa and the higher the palladium layer formed, the smaller the gas permeability
44

Adaptation of smallholder maize farmers to temperature and rainfall variability in Capricorn District Municipality, Limpopo Province, South Africa

Mazwi, Kabelo Makadikwe January 2019 (has links)
Thesis (M. Sc.) -- University of LImpopo, 2019 / Refer to document
45

Understanding Land-Atmosphere Interactions Across Multiple Scales

Huang, Yu January 2024 (has links)
The terrestrial water, energy and carbon cycles are tightly coupled through land-atmosphere (L-A) interactions, not only regulating local plant physiological activities and also modulating regional and global climate. With ongoing anthropogenic greenhouse gas emissions, many of these interactions can be modified and complicated. To better anticipate and adapt to future climate, it is of great importance and necessity to deepen and refine our understanding of the complex L-A interactions. In this dissertation, three topics are investigated across the ecosystem, regional and global scales respectively, throughout which, the critical role of dryness or drying in the context of global warming is highlighted. 𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟏: Evapotranspiration (ET) is a key component that connects the continental water, carbon and energy cycles and a proxy that measures the coupling strength between the biosphere and atmosphere. A wide range of biophysical factors, which usually exhibit nonlinearity and strong covariation, collectively modulate ET and complicate the overall understanding of ET dynamics. In the first study, the causal discovery frameworks PCMCI+ and Latent PCMCI are utilized with integrated priori physical knowledge to identify the dominant drivers and constraints of ET in the growing seasons across sites, with a particular focus on the role of site dryness degree. The Dryness Index (DI), defined as the ratio of annual mean net radiation to precipitation, has been introduced to assess the water availability relative to energy supply at different locations. By analyzing the daily observations from 115 flux tower sites and satellite remote sensing, it has been discovered that the feedbacks around ET are mediated by the degree of dryness: at sites with adequate water supply (using PCMCI+, the DI value averaged from such sites is 1.33), the atmospheric conditions, including incoming solar radiation and atmospheric demand for water (indicated by vapor pressure deficit, VPD), prevail in driving ET; in contrast, in semi-arid and arid areas where the water stress is high (using PCMCI+, the DI value averaged from such sites is 3.32), soil water content is the primary factor to constrain ET due to the plant regulation of stomatal conductance as part of the water conservation strategy. Additionally, as DI increases across sites, the sign of the contemporaneous causal relationship between VPD and ET can reverse from positive—indicating that atmospheric demand for water drives ET—to negative—reflecting that plant stomatal closure limits ET in response to the dryer atmosphere. 𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟐: As summer heatwaves and droughts are becoming more frequent and intense, such as in Western Europe, there is a growing interest in unraveling the physical mechanisms behind their occurrences and their changes. Soil desiccation is critical for the intensification and propagation of heatwaves, but its relative importance compared to other well-known large-scale atmospheric mechanisms, such as persistent atmospheric blocking systems and horizontal warm advection, remains elusive, especially in the context of a changing climate. In the second study, we utilize machine learning along with intervention experiments to estimate the respective contributions of soil water content 𝐶_𝑠𝑤𝑐 and atmospheric circulation 𝐶_𝑎𝑡𝑚 to daily maximum temperature in Western Europe, with a particular focus on the 2022 summer events. Our results reveal that during the two unparalleled heatwave events that occurred in June and July of 2022, the impact 𝐶_𝑠𝑤𝑐 on the heatwave intensity was on average approximately 40% of 𝐶_𝑎𝑡𝑚, and was comparable to 𝐶_𝑎𝑡𝑚 in continental dry-to-wet transition regions. Reviewing heatwaves in recent three decades, the percentage of heatwave areas that are significantly influenced by soil moisture-air temperature coupling has increased by 11.4% per decade. Additionally, for regions that have experienced heatwaves in at least 5 out of the past 33 years, about 21.7% areas, mostly in the transition zones, witness a significant increase in 𝐶_𝑠𝑤𝑐; while only 2.5% exhibit a substantial increase in 𝐶_𝑎𝑡𝑚. Furthermore, we find within the transitional climates, the intensification of heat extremes is mainly resulted from soil moisture depletion rather than atmospheric anomalies; while in (dry) Spain and the (wet) northern areas of central Europe, it is the variations in atmospheric circulation and soil desiccation that jointly fuel the persistent heatwaves. Our study emphasizes the observation-based large and increasing importance of soil moisture coupling in intensifying summer heatwaves and provides insights into future climates in extra-tropical regions like Western Europe, where a warmer and drier future is projected. 𝐂𝐡𝐚𝐩𝐭𝐞𝐫 𝟑: Earth system models (ESMs) and climate simulations are extensively employed to study the dynamics of climate and project long-term changes in the climate system. Despite their widespread use, large uncertainties persist among these models regarding the estimation of the continental gross primary productivity (GPP) and land carbon sink, which compromise the reliability of projections concerning future atmospheric carbon dioxide (𝐶𝑂₂) concentrations and the assessment of how terrestrial ecosystems respond to and might mitigate some of global warming. In ESMs, convection and clouds are one major source of such uncertainties—they are not only the most uncertain factors in the modeling of ``physical'' climate and also significantly affect the land carbon cycle through complex interactions involving radiation, moisture, and thermal pathways. In the third study, to isolate the role of clouds on the terrestrial carbon cycle, two models—the Community Earth System Model (CESM) and its super-parameterized counterpart (SPCESM, abbreviated as SP), which only differ in their representation of convection and clouds, are analyzed under present-day climatology to assess the impact of cloud representations on GPP. Compared with CESM, SP shows a 12.8% decrease in total cloud fraction within the 60°𝑆 ∼ 60°𝑁 range, which results in a notable GPP decline of 5.6 𝑃𝑔𝐶 𝑦𝑟⁻¹. This divergence, equivalent to 4.4% of terrestrial GPP in CESM, is comparable to the inter-annual variability in GPP and the uncertainty of GPP observed across climate models with diverse representations, extending beyond just cloud-related processes. Further analysis decomposes the GPP divergence between CESM and SP into two additive components and demonstrates that three-quarters of the difference is attributed to the negative impact from reduced cloud cover on light use efficiency (LUE) from CESM to SP, while the remaining one quarter is due to the positive impact from enhanced photosynthetically active radiation (PAR). An explainable machine learning model equipped with SHAP values further identifies two primary mechanisms underlying the lower LUE estimation in SP. Firstly, diminished clouds lead to higher air temperatures and reduced precipitation, creating a drier environment that prompts plants to regulate stomatal conductance to minimize water loss through transpiration, thereby suppressing the exchange rate of 𝐶𝑂₂ between biosphere and atmosphere. Secondly, the reduction in diffused radiation restricts the photosynthesis of shaded leaves. Combined, these two mechanisms reduce plant LUE, outweigh the beneficial impacts of increased PAR on photosynthesis, and ultimately lead to the declined terrestrial biosphere productivity in SP. Overall, we identify the representation of clouds as a key process for the terrestrial carbon cycle.
46

Barriers and drivers to the implementation of the "clean development mechanism" within the Nelson Mandela Bay Municipality: a case study

Wilson, Craig Michael January 2008 (has links)
The global threat of climate change is one of the most crucial environmental issues facing the world in modern times. In response to this threat, international governments have drafted the Kyoto Protocol which included the Clean Development Mechanism (CDM). The CDM is a scheme which invited developing countries, like South Africa, to become involved in climate change mitigation projects. While South Africa has been identified as an attractive host country for CDM projects, research has revealed that it lags behind other developing countries in this regard. This study provides a theoretical background to the CDM and grounds the subject within the field of Environmental Economics. Following a literature review of factors that could influence the involvement of a municipality in CDM projects, this thesis undertook a case study of the barriers and drivers to CDM implementation within the Nelson Mandela Bay Municipality (NMBM). Use was made of semi-structured interviews, where a questionnaire was used to guide the researcher’s interview process. Five NMBM officers, who were likely to have been involved with CDM project implementation, were interviewed. Data collected was analyzed using a coding technique and was compared and contrasted to the literature in a process of explanation building. It was possible to elicit 14 factors that acted as CDM-barriers; seven that acted as CDM-drivers; and 10 that were required to change within the NMBM to encourage greater CDM involvement. Of the barriers, lack of awareness, poor political will and lack of funding emerged as the most inhibiting. Of the CDM-drivers, the potential financial benefits; ownership of infrastructure capable of producing carbon assets; and technology transfer emerged as the factors most likely to promote CDM involvement. With regards the factors that require change, it emerged that a positive response would result from a proactive stance by National Government on the CDM; the use of Public-Private-Partnerships to facilitate CDM projects; and improved communication and capacity building within the NMBM and the Nelson Mandela Bay business community. The main recommendation offered to the NMBM was for it to draft a Sustainable Development Policy as well as a formal sustainable development strategy to drive a coherent and consolidated approach to the Municipality’s involvement with CDM projects. Further, it was proposed that the NMBM should, lobby National Government for it to promulgate enabling legislation and a framework which would encourage CDM investment in South Africa; and engage with local business to promote the active involvement of the Nelson Mandela Bay with the implementation of CDM projects. Keywords: Global Warming, Kyoto Protocol, Clean Development Mechanism, Sustainable Development, Environmental Economics, Public Sector, Nelson Mandela Bay Municipality.
47

An estimate of carbon footprint of Ekurhuleni Health District office and provincial clinic employees

Elimi, Ibrahim O 02 1900 (has links)
Climate change is regarded as the greatest threat facing the world today. The Intergovernmental Panel on Climate Change (IPCC) concluded that climate change is caused by human activities, as a result of greenhouse gases (GHGs) being emitted into the atmosphere. Scientific literature on the impact of climate change is well documented, especially for the health sector. The mission of the Gauteng Department of Health (GDoH) is to “contribute towards the reduction of the burden of diseases in all the communities in Gauteng”. Ekurhuleni Health District is part of GDoH and shares a similar mission. However, this mission is under threat due to the direct and indirect impact of climate change on the public health sector. Therefore, it is essential for Ekurhuleni Health District and Provincial Clinics to take measures to reduce their contribution to climate change in the light of improving the health of their constituent. This study estimates the carbon footprint of the employees of Ekurhuleni Health District and Provincial Clinics and determines the knowledge and perception of climate change among managers and operational employees. The methodologies of the Greenhouse Gas Protocol (GHGP) and the Department of Environmental Forestry and Rural Affairs (DEFRA) were used to quantify the carbon footprints of the employees of the Ekurhuleni Health District and Provincial Clinics. A content analysis was applied to determine the knowledge and perception of climate change. The study revealed that Scope 2, indirect emissions (electricity), accounts for 92% (35150 t CO2e) of the total carbon footprints for the period of five years, 2010-2014. Scope 1, direct emission (vehicles), is responsible for 4% (1362 t CO2e) and Scope 3, indirect emissions for ICT, for 2% (862 t CO2e), office paper 1% (181 t CO2e) and air conditioners 1% (458 t CO2e). The majority of employees demonstrated basic knowledge of climate change. However, the concept of GHGs was unfamiliar to most of the employees. In terms of perceptions of climate change, the majority of employees were concerned about the future of the planet and climate change and believed that climate change will impact their job description. The study recommends the following mitigation measures, among others, to reduce carbon footprints: (1) electrical vehicles; (2) substituting personal desktops with laptops; and (3) substituting HFC-23 air conditioner refrigerant with R410A. These recommendations have the potential to reduce the carbon emissions by 2445 t CO2e for the period of five (5) years and save R7 875 089 from fuel and power consumption. Furthermore, the District Office and Provincial Clinics can generate a revenue of R293 400 by registering for a CMD project for five years or R1 173 600 for the duration of the project (20 years). / Environmental Sciences / M. Sc. (Environmental Management)

Page generated in 0.419 seconds