• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1165
  • 291
  • 244
  • 221
  • 109
  • 103
  • 30
  • 28
  • 28
  • 28
  • 28
  • 28
  • 28
  • 24
  • 22
  • Tagged with
  • 2915
  • 339
  • 317
  • 281
  • 246
  • 183
  • 159
  • 152
  • 152
  • 149
  • 142
  • 141
  • 127
  • 126
  • 121
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

An attempt to quantify permafrost distribution near Schefferville, Quebec /

Jones, Ian G. January 1976 (has links)
No description available.
172

Ground ice characteristics in permafrost on the Fosheim Peninsula, Ellesmere Island, N.W.T. : a study utilizing ground probing radar and geomorphological techniques

Barry, Peter January 1992 (has links)
No description available.
173

Resonant column testing of frozen soils

Turcott Rios, Eduardo Enrique. January 1980 (has links)
No description available.
174

Cushion drag of air cushion vehicles.

Seebohm, Thomas January 1967 (has links)
No description available.
175

A model for increasing yield in sawmills based on detection of subsurface defects in canted logs using ground penetrating radar (GPR) system

Jadeja, Jayrajsinh. January 2007 (has links)
Thesis (M.S.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains ix, 106 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 75-76).
176

Techniques for improving landmine detection using ground penetrating radar

Pisipati, Udaynag. January 2006 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 23, 2007) Includes bibliographical references.
177

Dynamic properties of naturally frozen Fairbanks silt /

Wilson, Charles Ralph. January 1982 (has links)
Thesis (M.S.)--Oregon State University, 1983. / Typescript (photocopy). Includes bibliographical references (leaves 163-165). Also available via the World Wide Web.
178

Spectral Analysis of Thinning Beds Using Ground Penetrating Radar

Francese, Renee Rose 2012 May 1900 (has links)
Ground Penetrating Radar (GPR) is a near surface geophysical method that has been used for applications including archaeological sites, groundwater contamination, and geological mapping. Though GPR has been used extensively, advancements on data processing had a great impact on data resolution. GPR is frequently used for shallow investigations because of the high resolution near the surface; however, it has limited depth of penetration and vertical bed resolution. Vertical resolution is proportional to frequency. The thickness of beds in the subsurface is conventionally resolved to one-fourth the wavelength of the central frequency. The vertical resolution at a central frequency of 200 MHz in a beach environment is approximately 17 cm; however, that value does not accurately represent fine-scale lamina and pinching out of beds, which can be an order magnitude or more than the current resolution. Complex trace analysis and spectral analysis have been used in seismic reflection for characterizing structures and stratigraphy. These "attributes" have been used to indicate hydrocarbon presence in industry. The same concept was applied to a theoretical GPR model and tested against actual data. The theoretical GPR model was created to simulate a case in which two ideal 0 degree phase Ricker wavelets merge. The wavelets constructively "add" together to create a composite wavelet with double amplitude. Applying a spectral analysis reveals that an attribute in the form of instantaneous phase and instantaneous frequency can be used to image the beds merging. The spectral analysis was applied to field data from North Padre Island National Seashore, Texas, to image "pinch-outs". Multiple survey arrays were collected using a 200 MHz frequency antenna to image internal dune structures. The results showed anomalous features at merging beds and contacts between interfaces. The results directly influence sedimentological and geomorphological interpretations of internal dune structure and can be used to better understand erosional processes in coastal sedimentary environments.
179

Ground heat pump in combination with district heating for a multi-dwelling building in Gävle

Torrent Lluch, Mariona January 2012 (has links)
Environment has become a major concern for society, which awareness of the importance of an environmentally respectful development has been growing during the last decades. Economic reasons have encompassed this transition to a more planet friendly conception of human development. In fact, this transition has been parallel to the growing prices of fossil fuels, facing a clear perspective of a shortage on its availability, insufficient to cope with a growing demand in the near future. Within this context, the role of renewable energies in order to stop depending on fossil fuels and to reduce greenhouse gases emissions has become crucial.   Because of its climate, heating represents a major source of energy consumption in Sweden, accounting for almost 60% of the residential and services sector energy use. Maximizing the efficiency of heating systems and using renewable, environmentally friendly and economically sustainable sources of energy may have an enormous impact on both environment and economy.   In this thesis the use of district heating and ground heat pump for a multi-dwelling building is evaluated, both from the economic and environmental points of view. Both are recognized to be efficient heating systems, allowing important savings of other sources of energy, and respectful with the environment.   An installation combining both district heating and ground heat pump, for a multi-dwelling building in Gävle has been analyzed. Different scenarios have been considered, and results obtained show that when installing a ground heat pump, both economic savings and CO2 emissions reduction are obtained. Annual economic savings account for 16,8% when providing 60% of the thermal energy with the ground heat pump, and considering the investment associated to the recent installation of a new heat pump (in the case studied, boreholes were already drilled), the payback time is 7,4 years. CO2 emissions reduction for a normal year reaches 34%. However, if we look at the wider picture of electricity and heat production from a community (local, regional, national or even international) point of view, several considerations have to be taken into account, which are discussed in the report.
180

Ground Penetrating Radar Imaging of Ancient Clastic Deposits: A Tool for Three-dimensional Outcrop Studies

Akinpelu, Oluwatosin 14 January 2011 (has links)
The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface reservoir modelling. While this approach is quite promising for detailed three-dimensional outcrop studies, it is not an all-purpose panacea; thick overburden, poor antenna-ground coupling in rough terrains typical of outcrops, low penetration and rapid signal attenuation in mudstone and diagenetic clay- rich deposits often limit the prospects of this novel technique.

Page generated in 0.0623 seconds