• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular epidemiology of streptococcus agalactiae : mobile elements as genetic markers.

Luan, Shi-Lu January 2006 (has links)
<p>Streptococcus agalactiae, also designated group B streptococcus (GBS), is a Gram-positive coccus, and it is an important pathogen that causes invasive disease in neonates, pregnant adults, and non-pregnant adults with predisposing conditions. The group II intron GBSi1 is one of the major mobile genetic elements identified in S. agalactiae. The aim of this thesis was to characterize the GBSi1 distribution pattern, the population structure, and the influence of serotype- and clone-specific properties on the invasive capacity among clinical invasive and non-invasive isolates of S. agalactiae.</p><p>Two additional copies of GBSi1 were identified at sites different from the primarily identified scpB-lmb locus. The distribution of GBSi1 was uneven among different serotypes. Three intron copies were only found in isolates of serotype III, and these targeted all the three identified gene loci. In contrast, a single copy of GBSi1 was found in isolates of serotype II and V and only located at the scpB-lmb locus. Furthermore, at the 5′ flanking region of the scpB-lmb gene locus, a novel 2.1 kb DNA fragment with plasmid features was identified only in intron carrying isolates. This may suggest that GBSi1 once was brought into the S. agalactiae genome by an integrated plasmid.</p><p>Multilocus sequence typing was used to characterize totally 314 invasive and non-invasive S. agalactiae isolates collected in Northern and Western Sweden from the years 1988 to 2004. Five major genetic lineages (clonal complexes) were identified among both invasive and non-invasive isolates, including serotype Ia, Ib, and II to V, indicating a clonal population structure of S. agalactiae isolates. A number of genetically highly related isolates were found to express different capsular types, suggesting that capsule switching occurs rather frequently between isolates. Furthermore, non-invasive isolates belonging to the same clonal complexes displayed more heterogeneity in capsule expression as well as in the distribution patterns of mobile genetic elements than invasive isolates. This indicates that less variability is allowed in a highly selective environment such as the blood. All major clonal complexes and serotypes caused invasive disease, although their ability to do so varied greatly. CC17 was significantly associated with neonatal invasive disease; whereas CC19 was equally common among isolates from adult and neonatal disease, despite that both CC17 and CC19 expressed capsular type III. This striking difference seen between CC17 and CC19 suggests that clonal complex associated properties, in addition to capsular type, play important roles in the virulence of S. agalactiae. CC1, a new emerging clone since early 1990s, has caused substantial amount of disease among adults. In addition, mutually exclusive distribution of mobile elements GBSi1 and IS1548 was seen, and they were shown to constitute genetic markers for serotype III CC17 and CC19 isolates, respectively.</p>
2

Molecular epidemiology of streptococcus agalactiae : mobile elements as genetic markers.

Luan, Shi-Lu January 2006 (has links)
Streptococcus agalactiae, also designated group B streptococcus (GBS), is a Gram-positive coccus, and it is an important pathogen that causes invasive disease in neonates, pregnant adults, and non-pregnant adults with predisposing conditions. The group II intron GBSi1 is one of the major mobile genetic elements identified in S. agalactiae. The aim of this thesis was to characterize the GBSi1 distribution pattern, the population structure, and the influence of serotype- and clone-specific properties on the invasive capacity among clinical invasive and non-invasive isolates of S. agalactiae. Two additional copies of GBSi1 were identified at sites different from the primarily identified scpB-lmb locus. The distribution of GBSi1 was uneven among different serotypes. Three intron copies were only found in isolates of serotype III, and these targeted all the three identified gene loci. In contrast, a single copy of GBSi1 was found in isolates of serotype II and V and only located at the scpB-lmb locus. Furthermore, at the 5′ flanking region of the scpB-lmb gene locus, a novel 2.1 kb DNA fragment with plasmid features was identified only in intron carrying isolates. This may suggest that GBSi1 once was brought into the S. agalactiae genome by an integrated plasmid. Multilocus sequence typing was used to characterize totally 314 invasive and non-invasive S. agalactiae isolates collected in Northern and Western Sweden from the years 1988 to 2004. Five major genetic lineages (clonal complexes) were identified among both invasive and non-invasive isolates, including serotype Ia, Ib, and II to V, indicating a clonal population structure of S. agalactiae isolates. A number of genetically highly related isolates were found to express different capsular types, suggesting that capsule switching occurs rather frequently between isolates. Furthermore, non-invasive isolates belonging to the same clonal complexes displayed more heterogeneity in capsule expression as well as in the distribution patterns of mobile genetic elements than invasive isolates. This indicates that less variability is allowed in a highly selective environment such as the blood. All major clonal complexes and serotypes caused invasive disease, although their ability to do so varied greatly. CC17 was significantly associated with neonatal invasive disease; whereas CC19 was equally common among isolates from adult and neonatal disease, despite that both CC17 and CC19 expressed capsular type III. This striking difference seen between CC17 and CC19 suggests that clonal complex associated properties, in addition to capsular type, play important roles in the virulence of S. agalactiae. CC1, a new emerging clone since early 1990s, has caused substantial amount of disease among adults. In addition, mutually exclusive distribution of mobile elements GBSi1 and IS1548 was seen, and they were shown to constitute genetic markers for serotype III CC17 and CC19 isolates, respectively.

Page generated in 0.0772 seconds