• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frames Generated by Actions of Locally Compact Groups

Iverson, Joseph 27 October 2016 (has links)
Let $G$ be a second countable, locally compact group which is either compact or abelian, and let $\rho$ be a unitary representation of $G$ on a separable Hilbert space $\mathcal{H}_\rho$. We examine frames of the form $\{ \rho(x) f_j \colon x \in G, j \in I\}$ for families $\{f_j\}_{j \in I}$ in $\mathcal{H}_\rho$. In particular, we give necessary and sufficient conditions for the joint orbit of a family of vectors in $\mathcal{H}_\rho$ to form a continuous frame. We pay special attention to this problem in the setting of shift invariance. In other words, we fix a larger second countable locally compact group $\Gamma \supset G$ containing $G$ as a closed subgroup, and we let $\rho$ be the action of $G$ on $L^2(\Gamma)$ by left translation. In both the compact and the abelian settings, we introduce notions of Zak transforms on $L^2(\Gamma)$ which simplify the analysis of group frames. Meanwhile, we run a parallel program that uses the Zak transform to classify closed subspaces of $L^2(\Gamma)$ which are invariant under left translation by $G$. The two projects give compatible outcomes. This dissertation contains previously published material.

Page generated in 0.0542 seconds