• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A estrutura do grupo adjunto e a propriedade do normalizador

Matos, Márcia Graci de Oliveira 18 February 2016 (has links)
Submitted by Santos Davilene (davilenes@ufba.br) on 2017-05-31T21:46:52Z No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:05:21Z (GMT) No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5) / Made available in DSpace on 2017-06-07T11:05:21Z (GMT). No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5) / Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor).

Page generated in 0.0653 seconds