• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Directed Adult Neural Stem/Progenitor Cell Fate in Microsphere-loaded Chitosan Channels

Kim, Howard 10 January 2012 (has links)
Spinal cord injury (SCI) is a devastating condition characterized by the loss of neuronal pathways responsible for coordinating motor and sensory information between the brain and the rest of the body. The mammalian spinal cord is limited in its ability to repair itself, so treatments devised to replace damaged tissue and promote regeneration are essential towards developing a cure. This work describes the development of a guidance channel strategy for spinal cord transection. Chitosan guidance channels were designed as a delivery vehicle for neural stem/progenitor cell (NSPC) transplants and drug-eluting poly(lactic-co-glycolic acid) (PLGA) microspheres. PLGA microspheres were embedded into chitosan channels by a spin-coating method. These microsphere-loaded channels demonstrated the ability for controlled short-term bioactive release of the small molecule drug dibutyryl cyclic-AMP (dbcAMP) and long-term bioactive release of the protein alkaline phosphatase. NSPCs were shown to be responsive to dbcAMP delivery, which results in greatly enhanced differentiation into neurons. The effect of directed neuronal differentiation was investigated after spinal cord transection in rat, resulting in a dramatic increase in NSPC transplant survival. Guidance channels containing NSPCs treated with dbcAMP resulted in robust tissue bridge formation after SCI, demonstrating extensive axonal regeneration and promoting functional recovery.
2

Directed Adult Neural Stem/Progenitor Cell Fate in Microsphere-loaded Chitosan Channels

Kim, Howard 10 January 2012 (has links)
Spinal cord injury (SCI) is a devastating condition characterized by the loss of neuronal pathways responsible for coordinating motor and sensory information between the brain and the rest of the body. The mammalian spinal cord is limited in its ability to repair itself, so treatments devised to replace damaged tissue and promote regeneration are essential towards developing a cure. This work describes the development of a guidance channel strategy for spinal cord transection. Chitosan guidance channels were designed as a delivery vehicle for neural stem/progenitor cell (NSPC) transplants and drug-eluting poly(lactic-co-glycolic acid) (PLGA) microspheres. PLGA microspheres were embedded into chitosan channels by a spin-coating method. These microsphere-loaded channels demonstrated the ability for controlled short-term bioactive release of the small molecule drug dibutyryl cyclic-AMP (dbcAMP) and long-term bioactive release of the protein alkaline phosphatase. NSPCs were shown to be responsive to dbcAMP delivery, which results in greatly enhanced differentiation into neurons. The effect of directed neuronal differentiation was investigated after spinal cord transection in rat, resulting in a dramatic increase in NSPC transplant survival. Guidance channels containing NSPCs treated with dbcAMP resulted in robust tissue bridge formation after SCI, demonstrating extensive axonal regeneration and promoting functional recovery.
3

Topographic guidance scaffolds for peripheral nerve interfacing

Clements, Isaac Perry 22 November 2010 (has links)
In response to high and rising amputation rates, significant advances have been made in the field of prosthetic limb design. Unfortunately, there exists a lag in the neural interfacing technology required to provide an adequate link between the nervous system and this emerging generation of advanced prosthetic devices. Novel approaches to peripheral nerve interfacing are required to establish the stable, high channel count connections necessary to provide natural, thought driven control of an external prosthesis. Here, a tissue engineering-based approach has been used to create a device capable of interfacing with a regenerated portion of amputated nerve. As part of this work, a nerve guidance channel design, in which small amounts of interior scaffolding material could be precisely positioned, was evaluated. Guidance channels containing a single thin-film sheet of aligned scaffolding were shown to support robust functional nerve regeneration across extended injury gaps by minimally supplementing natural repair mechanisms. Significantly, these "thin-film enhanced nerve guidance channels" also provided the capability to guide the course of axons regenerating from a cut nerve. This capability to control axonal growth was next leveraged to create "regenerative scaffold electrodes (RSEs)" able to interface with axons regenerating from an amputated nerve. In the RSE design, low-profile arrays of interfacing electrodes were embedded within layers of aligned scaffolding material, such that regenerating axons were topographically guided by the scaffolding through the device and directly across the embedded electrodes. Chronically implanted RSEs were successfully used to record evoked neural activity from amputated nerves in an animal model. These results demonstrate that the use of topographic cues within a nerve guidance channel might offer the potential to influence the course of nerve regeneration to the advantage of a peripheral nerve interface suitable for limb amputees.

Page generated in 0.0764 seconds