• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 15
  • 2
  • Tagged with
  • 70
  • 70
  • 39
  • 30
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hit-to-kill guidance algorithm for the interception of ballistic missiles during the boost phase

Lukacs, John A. 06 1900 (has links)
A near-optimal guidance law has been developed using the direct method of calculus of variations that maximizes the kinetic energy transfer from a surface-launched missile upon interception to a ballistic missile target during the boost phase of flight. Mathematical models of a North Korean Taep'o-dong II (TD-2) medium-range ballistic missile and a Raytheon Standard Missile 6 (SM-6) interceptor are used to demonstrate the guidance lawâ s performance. This law will utilize the SM-6â s onboard computer and active radar sensors to independently predict an intercept point, solve the two-point boundary value problem, and determine a near-optimal flight path to that point. Determining a truly optimal flight path would require significant computing power and time, while a near-optimal flight path can be calculated onboard the interceptor and updated in real time without significant changes to the interceptorâ s hardware. That near-optimal guidance path is then converted into a set of command functions and fed back into the control computer of the interceptor. By modifying the second and third derivatives of the two-point boundary value problem, the intercept conditions can be varied to study their effects upon the optimal flight path regarding the maximization of kinetic energy upon impact. / US Navy (USN) author.
12

Optimal and suboptimal corrections for proportional navigation

Cottrell, Ronald Gelnn, 1942- January 1970 (has links)
No description available.
13

Design techniques for a class of multirate sampled data control systems

Flowers, David Carl 08 1900 (has links)
No description available.
14

Development, modeling, and simulation of a nano aerial vehicle using empirical data

Davenport, Wyatt Emery, January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed January 28, 2008) Includes bibliographical references (p. 83-84).
15

Integration of local area augmentation system and inertial navigation system for aircraft surface movement guidance

Marti, Lukas Michael. January 2000 (has links)
Thesis (M.S.)--Ohio University, August, 2000. / Title from PDF t.p.
16

Linearised optimal control and application to a gliding projectile /

Jepps, G. January 1980 (has links) (PDF)
Thesis (M.Eng.Sc.) - Dept. of Electrical and Electronic Engineering, University of Adelaide, 1983. / AR-003-687. Originally his Thesis (M.Eng.Sc.) - Dept. of Electrical and Electronic Engineering, University of Adelaide, 1980. Photostat. Includes bibliographical references (p. 66-67).
17

Guidance, navigation, and control for munitions /

Ilg, Mark Dean. Chang, Bor-Chin. January 2008 (has links)
Thesis (Ph.D.)--Drexel University, 2008. / Includes abstract and vita. Includes bibliographical references (leaves 120-126).
18

Optimal and suboptimal terminal guidance laws with practical considerations for a short range missile against an accelerating target /

Bates, Carlton James January 1980 (has links)
No description available.
19

Optimal and on-board near-optimal midcourse guidance

Katzir, Shevach January 1988 (has links)
Optimal midcourse guidance is examined for an air-to-air missile featuring boost-coast-sustain propulsion. A vertical plane, point-mass model is studied with load factor as a control variable. Time-range-energy optimal trajectories are computed, open-loop, via the usual necessary conditions and a multiple-shooting algorithm. A requirement on terminal velocity magnitude is examined for its effect on firing range. Next, a study of the optimal midcourse guidance problem with reduced-order models is presented. The models under study, in addition to the point-mass model, are: - Singularly perturbed model with y as fast variable; - Point mass model with approximation of the induced-drag; - Energy model. One of the major results in this study is that the reduced-order models are not accurate enough to approximate the optimal trajectories and so are of limited use as reference trajectories in an on-board scheme. Thus, optimal trajectories, computed by using the point-mass model, are selected as the reference trajectories for a closed-loop guidance scheme. Finally, an approach to on-board real-time calculations for an optimal guidance approximation is derived. Extremal fields and neighboring extremal theory ideas are used together with pre-calculated Euler solutions to construct a closed-loop guidance algorithm. The method is applied to the midcourse guidance of an air-to-air missile and was found to perform quite well. / Ph. D.
20

Commercial launch vehicle design and predictive guidance development / Matthew R. Tetlow.

Tetlow, Matthew R. (Matthew Robert) January 2003 (has links)
Bibliography: leaves 220-229. / xxiv, 229 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Investigates alternative reusable launch vehicle design concepts and develops a robust guidance strategy for use on the ascent and flyback phases of flight. The first concept vehicle uses air breathing engines to perform a powered return flight to the launch site; the second employs only aerodynamic forces to achieve flyback, returning unpowered. Software simulation shows that a powered return flight delivers more payload than an unpowered return flight. The guidance strategy developed is a numerical guidance system robust enough for use in real time and works by integrating the current state, along the trajectory, to the final state of the vehicle. It then compares the achieved final state to the required target state and calculates the target condition error. A parameterised non-linear optimisation technique is then used to determine the new values of the optimisation parameters required to steer the vehicle from its current position and velocity to the desired position and velocity. / Thesis (Ph.D.)--University of Adelaide, School of Mechanical Engineering, 2003

Page generated in 0.0899 seconds