• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Equipping a selected group of pastors in the Gulf Stream Baptist Association, Fort Lauderdale, Florida, in strategic planning skills

Boone, John C., January 2007 (has links)
Thesis (D. Min.)--New Orleans Baptist Theological Seminary, 2007. / Abstract and vita. Includes final project proposal. Description based on Microfiche version record. Includes bibliographical references (leaves 190-196, 74-78).
12

Ocean current energy resource assessment for the United States

Yang, Xiufeng 13 January 2014 (has links)
Ocean currents are an attractive source of clean energy due to their inherent reliability, persistence and sustainability. The Gulf Stream system is of particular interest as a potential energy resource to the United States with significant currents and proximity to the large population on the U.S. east coast. To assess the energy potential from ocean currents for the United States, the characterization of ocean currents along the U.S. coastline is performed in this dissertation. A GIS database that maps the ocean current energy resource distribution for the entire U.S. coastline and also provides joint velocity magnitude and direction probability histograms is developed. Having a geographical constraint by Florida and the Bahamas, the Florida Current has the largest ocean current resource which is fairly stable with prevalent seasonal variability in the upper layer of the water column (~200m). The core of the Florida Current features higher stability than the edges as a result of the meandering and seasonal broadening of the current flow. The variability of the Gulf Stream significantly increases as it flows past the Cape Hatteras. The theoretical energy balance in the Gulf Stream system is examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for quasi-geostrophic subtropical gyres. Additional turbine drag is formulated and incorporated in the model to represent power extraction by turbines. Parameters in the model are calibrated against ocean observational data such that the model can reproduce the volume and kinetic energy fluxes in the Gulf Stream. The results show that considering extraction over a region comprised of the entire Florida Current portion of the Gulf Stream system, the theoretical upper bound of averaged power dissipation is around 5.1 GW, or 45 TWh/yr. If the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the U.S. coastline, the theoretical upper bound of averaged power dissipation becomes approximately 18.6 GW or 163 TWh/yr. The impact of the power extraction is primarily constrained in the vicinity of the turbine region, and includes a significant reduction of flow strength and water level drop in the power extraction site. The turbines also significantly reduce residual energy fluxes in the flow, and cause redirection of the Gulf Stream. A full numerical simulation of the ocean circulation in the Atlantic Ocean is performed using Hybrid Coordinate Ocean Model (HYCOM) and power extraction from the Florida Current is modeled as additional momentum sink. Effects of power extraction are shown to include flow rerouting from the Florida Strait channel to the east side of the Bahamas. Flow redirection is stronger during peak summer flow resulting in less seasonal variability in both power extraction and residual fluxes in the Florida Current. A significant water level drop is shown at the power extraction site, and so is a slight water level rise along the coasts of Florida and the Gulf. The sum of extracted power and the residual energy flux in the Florida Current is lower than the original energy flux in the baseline case, indicating a net loss of energy reserve in the Florida Current channel due to flow redirection. The impact from power extraction on the mean flow field is concentrated in the near field of the power extraction site, while shifts in the far flow field in time and space have little impact on the overall flow statistics.
13

Coating selection process for Gulf Stream hydroturbines

Unknown Date (has links)
The study addresses the coating selection for a proposed placement of a hydroturbine into the Gulf Stream. The turbine will generate energy in a similar manner to a wind turbine. The effects of biofouling and corrosion in the current project are assessed. A review of different types of traditional paint coatings is given, as well as the option for a copper-nickel alloy. Testing that should be undertaken for the coating selection is described in detail. Coating considerations are offered and discussed. Design considerations and modifications are also offered. / by Andrew Spicer Bak. / Vita. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
14

Characterization of Internal Wave Activity in the Straits of Florida

Unknown Date (has links)
The Gulf Stream current in the Straits is typically dominated by a strong northerly current, associated shear, and eddies. The water column also includes a prominent thermocline and periodically features internal waves centered on the upper or lower edges of the thermocline. Despite numerous previous related studies, there is limited available field data on internal waves in the Straits of Florida. Here, study and analysis of velocity, temperature and conductivity data acquired in the Straits over a period of time are described, in support of identifying presence of internal waves in the flow. A systematic procedure is employed in modifying the universal Garrett- Munk spectrum for internal waves in the open ocean for application to flow in the Straits of Florida. Using this process, identified internal waves are characterized and related velocity fluctuations in the time series are isolated to facilitate consideration of their correlations with simultaneously observed magnetic fields. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
15

Seabird foraging in dynamic oceanographic features

Thorne, Lesley Helen January 2010 (has links)
<p>Oceanographic features, such as fronts, eddies, and upwellings, provide important foraging areas for marine predators. These areas serve as important "hotspots" of marine life, by aggregating weakly swimming lower and mid-trophic level species which, in turn, attract foraging predators. Despite the importance of these dynamic features, we lack a comprehensive understanding of how they create foraging habitat for seabirds and other marine predators. In the first part of this dissertation, I review current knowledge of how seabirds use oceanographic features with an emphasis on developing a more mechanistic understanding of these features, and identify important considerations for future studies. I use the findings of this review to inform two field research projects in the Bay of Fundy, Canada and Onslow Bay, North Carolina. In these two projects, I examined seabird abundance and distribution in relation to oceanographic features that occur at different spatial and temporal scales. In the first project, I examined foraging habitat of red-necked phalaropes (<italic>Phalaropus lobatus</italic>) in relation fine-scale tidal forcing near the Brier Island ledges in the Bay of Fundy. This research demonstrated the importance of biophysical interactions in creating phalarope habitat, and characterized red-necked phalarope habitat in both space and time. In Onslow Bay, I investigated the effects of Gulf Stream fronts and eddies on the abundance and distribution of seabirds using both remotely sensed and in situ data. I used fisheries acoustics surveys to investigate prey distribution within Gulf Stream frontal eddies. I then developed habitat models for the six most commonly sighted species or species groups (Cory's shearwaters, <italic>Calonectris diomedea</italic>; greater shearwaters (<italic>Puffinus gravis</italic>; Wilson's storm petrel, <italic>Oceanites oceanicus</italic>; Audubon's shearwaters, <italic>Puffinus lherminieri</italic>; black-capped petrels, <italic>Pterodrama hasitata</italic>; and red and red-necked phalaropes, grouped together as <italic>Phalaropus</italic> spp.) using multivariate modeling techniques. Gulf Stream frontal eddies influenced the abundance and distribution of seabirds in Onslow Bay, although frontal features were not as important in predicting seabird habitat as demonstrated in previous studies in the South Atlantic Bight. Prey availability in Gulf Stream frontal eddies was highest in eddy cold core regions, particularly in those regions close to the Gulf Stream. Taken together, the results of my dissertation: underscore the importance of conducting standardized surveys to assess dynamic environmental variables; demonstrate the use of multivariate methods to examine seabird foraging in relation to oceanographic features; emphasize the need to evaluate both prey distributions and physical regimes within oceanographic features at depth; and highlight the importance of temporal aspects of oceanographic features, such as the persistence and age of the features, when assessing the role that these features play in creating seabird foraging habitat.</p> / Dissertation
16

Subtropical to Subpolar Lagrangian Pathways in the North Atlantic and Their Impact on High Latitude Property Fields

Burkholder, Kristin Cashman January 2011 (has links)
<p>In response to the differential heating of the earth, atmospheric and oceanic flows constantly act to carry surplus energy from low to high latitudes. In the ocean, this poleward energy flux occurs as part of the large scale meridional overturning circulation: warm, shallow waters are transported to high latitudes where they cool and sink, then follow subsurface pathways equatorward until they are once again upwelled to the surface and reheated. In the North Atlantic, the upper limb of this circulation has always been explained in simplistic terms: the Gulf Stream/North Atlantic Current system carries surface waters directly to high latitudes, resulting in elevated sea surface temperatures in the eastern subpolar gyre, and, because the prevailing winds sweeping across the Atlantic are warmed by these waters, anomalously warm temperatures in Western Europe. This view has long been supported by Eulerian measurements of North Atlantic sea surface temperature and surface velocities, which imply a direct and continuous transport of surface waters between the two gyres. However, though the importance of this redistribution of heat from low to high latitudes has been broadly recognized, few studies have focused on this transport within the Lagrangian frame. </p><p>The three studies included in this dissertation use data from the observational record and from a high resolution model of ocean circulation to re-examine our understanding of upper limb transport between the subtropical and subpolar gyres. Specifically, each chapter explores intergyre Lagrangian pathways and investigates the impact of those pathways on subpolar property fields. The findings from the studies suggest that intergyre transport pathways are primarily located beneath the surface and that subtropical surface waters are largely absent from the intergyre exchange process, a very different image of intergyre transport than that compiled from Eulerian data alone. As such, these studies also highlight the importance of including 3d Lagrangian information in examinations of transport pathways.</p> / Dissertation
17

A sea change: The Gulf Stream and the transformation of Ernest Hemingway's style, 1932 - 1952

Ott, Mark Patrick 12 1900 (has links)
The dissertation argues that the transformations in Ernest Hemingway's writing style and his philosophy of the natural world between 1932 and 1952 can be attributed to his intense immersion in the environment of the Gulf Stream. This dissertation draws primarily on Hemingway's handwritten fishing logs from 1932, 1933, and 1934 in the Hemingway Collection at the John F. Kennedy Library, which have not been published or thoroughly studied. In 1929, Hemingway portrayed the Gulf Stream as a frontier, and claimed that he wanted to "write like Cezanne painted." Critics interpreted his work as a form of literary naturalism. In 1952, Hemingway portrayed the Gulf Stream world as a harmonious, organic whole, and he claimed that he would like to have his work illustrated by Winslow Homer. The distinct differences in the portrayal of themes, setting, and character between To Have and Have Not (1937) and The Old Man and the Sea (1952) are explored to illustrate the dimensions of the transformations within Hemingway's work. Numerous specific passages in the fishing logs served as seeds for scenes in these works, as Hemingway gathered raw material for his fiction. Through his scientific study of the climate, marine life, and birds of the Gulf Stream from 1932 to 1939, Hemingway's understanding of the integration of the natural world broadened. The new knowledge of "what to leave out" of his fiction refined his method of writing from the "iceberg principle," in which seven-eighths of the story is omitted. The precise observations of the logs, inscribed through hundreds of pages, generated the stylistic and philosophic transformation that occurred between 1932 and 1952.
18

On the Horizontal Advection and Biogeochemical Impacts of North Atlantic Mode Waters and Boundary Currents

Palter, Jaime Beth, January 2007 (has links)
Thesis (Ph. D.)--Duke University, 2007.
19

On the Horizontal Advection and Biogeochemical Impacts of North Atlantic Mode Waters and Boundary Currents

Palter, Jaime Beth 26 July 2007 (has links)
Using a combination of hydrographic data and the trajectories and profiles of isobaric floats, this dissertation evaluates the connections between remote regions in the North Atlantic. First, I establish that the production and advection of the North Atlantic Subtropical Mode Water (STMW) introduces spatial and temporal variability in the subsurface nutrient reservoir of the subtropical gyre. As the mode water is formed, its nutrients are depleted by biological utilization. When the depleted water mass is exported to the gyre, it injects a wedge of low-nutrient water into the upper layers of the ocean. Contrary to intuition, cold winters that promote deep convective mixing and vigorous mode water formation may diminish downstream primary productivity by altering the subsurface delivery of nutrients. Next, the source of elevated nutrient concentrations in the Gulf Stream is assessed. The historical hydrographic data suggest that imported water advected into the Gulf Stream via the tropics supplies an important source of nutrients to the Gulf Stream. Because the high nutrients are likely imported from the tropics, diapycnal mixing need not be invoked to explain the Gulf Stream's high nutrient concentrations, as had been previously hypothesized. Furthermore, nutrients do not increase along the length of the Stream, as would be expected with strong diapycnal mixing.Finally, profiling float data are used to investigate how the Labrador Sea Water enters the Deep Western Boundary Current, one of the primary pathways by which it exits the subpolar gyre. With the trajectories and profiles of an extensive array of P-ALACE floats I evaluate three processes for their role in the entry of Labrador Sea Water in the Deep Western Boundary Current (DWBC): 1) LSW is formed directly in the DWBC, 2) Eddies flux LSW laterally from the interior Labrador Sea to the DWBC, and 3) A horizontally divergent mean flow advects LSW from the interior to the DWBC. Each of the three processes has the potential to remove heat from the boundary current, and both the formation of LSW directly in the boundary current and the eddy heat flux are possible sources of interannual variability in the exported LSW product. / Dissertation
20

Flow over surface discontinuities in a marine environment

Moore, Erin M. 25 July 2002 (has links)
This study concentrates on analysis of LongEZ aircraft data taken offshore of the Atlantic Coast of the United States. Due to the land structure of the region, it was possible to isolate the effect of narrow land on air as it flows offshore. The narrow land (Outer Banks) separates inland water from the sea. With greater land fetch, the internal boundary layer (IBL) over land grows deeper and the eddies presumably grow larger. Larger eddies typically decay more slowly than smaller eddies, and so the turbulence advected from land with a larger land fetch should survive longer over the sea and be greater in magnitude than that with smaller land fetch. The turbulence is studied using aircraft eddy correlation data as the flow is advected over the water. As expected, greater and longer-lasting turbulence is present downstream from greater land widths. Aircraft data taken over the Gulf Stream (GS) boundary are analyzed to study the effects of the sea surface temperature (SST) front on downstream boundary layer structure. Unstable and stable flows are studied in this region. The stable flow case is found to have an upside-down structure, with greater turbulence aloft causing stress convergence at the surface, which acts to accelerate the flow. The local thermally generated pressure gradient is important in the momentum budget across the GS front in both flow cases. A synthetic aperture radar (SAR) image is analyzed qualitatively in the region between the Atlantic Coast and the Gulf Stream front for intercomparison of data and to examine the influences of varying static stabilities and surface conditions upon the backscatter shown in satellite images. The growth rates of the internal boundary layer due to flow over a heterogeneous surface including flow from land over the water and flow between cooler water and warmer water are calculated. These results are compared to similar calculations of growth rates from previous experiments. It is found that the growth rate of an internal boundary layer is dependent on surface roughness, despite the inclusion of σ[subscript w] in the normalization of the growth rate. / Graduation date: 2003

Page generated in 0.254 seconds