• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiple testing using the posterior probability of half-space: application to gene expression data.

Labbe, Aurelie January 2005 (has links)
We consider the problem of testing the equality of two sample means, when the number of tests performed is large. Applying this problem to the context of gene expression data, our goal is to detect a set of genes differentially expressed under two treatments or two biological conditions. A null hypothesis of no difference in the gene expression under the two conditions is constructed. Since such a hypothesis is tested for each gene, it follows that thousands of tests are performed simultaneously, and multiple testing issues then arise. The aim of our research is to make a connection between Bayesian analysis and frequentist theory in the context of multiple comparisons by deriving some properties shared by both p-values and posterior probabilities. The ultimate goal of this work is to use the posterior probability of the one-sided alternative hypothesis (or equivalently, posterior probability of the half-space) in the same spirit as a p-value. We show for instance that such a Bayesian probability can be used as an input in some standard multiple testing procedures controlling for the False Discovery rate.
2

Multiple testing using the posterior probability of half-space: application to gene expression data.

Labbe, Aurelie January 2005 (has links)
We consider the problem of testing the equality of two sample means, when the number of tests performed is large. Applying this problem to the context of gene expression data, our goal is to detect a set of genes differentially expressed under two treatments or two biological conditions. A null hypothesis of no difference in the gene expression under the two conditions is constructed. Since such a hypothesis is tested for each gene, it follows that thousands of tests are performed simultaneously, and multiple testing issues then arise. The aim of our research is to make a connection between Bayesian analysis and frequentist theory in the context of multiple comparisons by deriving some properties shared by both p-values and posterior probabilities. The ultimate goal of this work is to use the posterior probability of the one-sided alternative hypothesis (or equivalently, posterior probability of the half-space) in the same spirit as a p-value. We show for instance that such a Bayesian probability can be used as an input in some standard multiple testing procedures controlling for the False Discovery rate.
3

Development of Novel Green’s Functions and Their Applications to Multiphase and Multilayered Structures

Han, Feng 05 October 2006 (has links)
No description available.

Page generated in 0.0413 seconds