• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processes for Interactive Hard-Surface Modeling in Simulations

Sand, Logan 01 May 2015 (has links)
As video games become more realistic, their applications are ever expanding. They can now show detail at an almost photorealistic level, and allow the player to make any number of decisions that can affect the outcome. Simulations are using this to create more and more realistic scenarios as training for high-risk professions. This creative project will research what is necessary for models that are to be used in educational or training simulations.
2

Study of High-Entropy Alloys on Hardfacing Weld

Hsieh, Wen-Tai 06 July 2007 (has links)
In recent years, series of high-entropy alloy have been well developed with high hardness and high temperature stability. These properties could apply in hard surface welding technology. The previous research showed that Al0.5CoCrCuFeNi based alloy contained excellent abrasive and adhesive wear resistant properties. According to the results of first year project, the post heat treatment is required for Type A (Al0.3CrFe1.5MnNi0.5 ) and B (Al0.5CrFe1.5MnNi0.5) alloys. It is not suitable for the industrial field service in certain repairing application. This research project will modify the Al0.5CrFe1.5MnNi0.5 base high-entropy alloy in the alloy content of Cr and Ni. These new alloy called Type D high entropy alloys include BCC and FCC two phases. We expect BCC part will provide the wear hardness and FCC part could improve the ductility during the wearing stage. The FCC phase may improve the manufacture of welding rods, also. The research contents include, (1) Type D high entropy alloys weld rod evaluation, (2) wear test, (3) microstructure analysis using electron micro-probe
3

The Theoretical Studies and Numerical Simulations Of The Effects Of Heterogeneous Composite Carbon Fiber Bipolar Plates And Traditional Hard Surface Bipolar Plates On The Flow Field

Wang, Chi-yin 04 September 2006 (has links)
In this thesis the numerical method is adopted to study the flow characteristics of reactants, when the newly developed heterogeneous composite carbon bipolar plate and the traditional hard surface bipolar plate are applied to fuel cells. The simulation in this study includes the distributions of the velocity and pressure of oxidizers flowing in a parallel or serpentine flow channel under several inlet gas flow rates and pressures. The difficulty to supply reactant to the active area under the ribs is also studied in this thesis. From these studies we can understand the strong and weak points of the newly developed bipolar plates and the traditional bipolar plates better. The simulation results display that the gaseous reactants or products can permeate through the gaps between carbon fibers into or out of active area under the rib, which is formed with carbon fiber bunches. Therefore more reactant gases can be supplied with the heterogeneous carbon fiber bipolar plates than the graphite bipolar plates. In addition, the higher efficiency of fuel cells can be obtained with the new plate, especially in high power density. The pressure distribution in making use the heterogeneous carbon fiber bipolar plates are more uniform, and the pressure drop is also less than the traditional bipolar plates. For large fuel cells the current distribution will be more uniform and the pumping power will be less. The reactant gases can flow through the gaps of carbon fibers and the porous carbon cloth into the catalyst layers by convection and diffusion. So no matter what type of the flow channels used the needed oxidizer is much less with the new bipolar plate than with traditional one. The flow fields of the two types of bipolar plates are quite similar, but the gas needed to supply is also much less with the new plate. Because of the advantages mentioned above, we believe that the heterogeneous carbon fiber bipolar plate is better than the traditional graphite bipolar plate. Keywords: fuel cell, heterogeneous carbon fiber bipolar plate,hard surface bipolar plate

Page generated in 0.0469 seconds