• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 10
  • 8
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A limnological study of factors affecting algal biodiversity in the Hartbeespoort Dam

Ololo, Gustave January 2014 (has links)
M.Sc. (Aquatic Health) / The relationships between water quality variables and phytoplankton diversity in the Hartbeespoort Dam were assessed spatially and temporally from February 2011 to March 2012 to evaluate the effects of the water quality variables on cyanobacterial bloom (Microcystis aeruginosa) hence aquatic macrophytes growth (Eichhornia crassipes) in the dam. Variables measured using standard methods included; temperature, pH, electrical conductivity, total suspended solids, dissolved oxygen, nitrate, nitrite, total phosphorous , ammonium, trace metals, chlorophyll-a and the phytoplankton community. The physical parameters ranged between: temperature (11.8-28 oC), electrical conductivity (282-796 ƒÊS/cm), dissolved oxygen (0.33-32.2 mg/L), pH (6.95-9.91) and total suspended solids (2-372 mg/L). Chemical variables ranged between; total phosphorous (0.02-3.5 mg/L), nitrate (0.03-21.2 mg/L), nitrite (0.02-0.48 mg/L) and ammonium (0.01-1.58 mg/L), chlorophyll-a (0.13-8693 ƒÊg/L), and exceed the TWQR values of the South African Water Quality Guidelines for aquatic ecosystem health health. Metal concentrations in water had the following decreasing order; macro elements: potassium > calcium >sodium > magnesium. Microelements: iron >zinc > aluminium > copper > nickel > manganese > chromium> selenium > lead > silver > arsenic > cadmium. Iron had the highest concentration among microelement of 631.62 ƒÊg/L and potassium the highest concentration amongst macro element of 34.49 mg/L. Six Different algal divisions were found in the dam with cyanophyta (cyanobacteria) been the most dominant group (95 %) and M.aeruginosa the most dominant species (69 %). The current study revealed an increase in physical parameters, chlorophyll-a and phytoplankton community and a decrease in chemical parameters in the summer months. An inverse relationship was observed in the winter months at all sites. One-way ANOVA showed a significant differences for physical variables (p <0.05) between months, with no significant differences noted (p > 0.05) between sites and between depths. Chemical variables however, showed a significant differences between months, sites and between depths (p <0.05). A 2-tailed Pearson correlation revealed negative correlations between temperatures and phosphorus, ammonia, nitrate, nitrite, electrical conductivity and iron (r=-0.298;-0.232;-0.099;-0.461;-0.441;-0.260) respectively and positive correlations between temperatures and chlorophyll-a and pH (r= 0.240; 0.609 ;) respectively (p <0.05; p <0.01). Canonical discriminant functions analysis revealed similarities and dissimilarities in water quality variables temporally and spatially with eigenvalues of 84.6 % and 59.1 % respectively. There was an adverse impact of the physico-chemical variables on the phytoplankton community, therefore aquatic macrophytes growth in the dam. The current study revealed that temperature, pH, phosphorous, nitrate and probably iron, copper, zinc and selenium may have contributed to the hypertrophic state of the dam, hence cyanobacterial bloom and growth of aquatic macrophytes.
2

The design of an aquacultural research facility and information centre in Hartbeespoort, North-West province.

Lourens, Philip. January 2012 (has links)
Thesis (MTech. degree in Architecture: Professional)--Tshwane University of Technology, 2012. / The research facilities will look into methods to improve freshwater fish production and the self-sustainable capabilities thereof. The proposed outcome is to provide fish farms with the necessary information that will help to optimise production by means of the aquacultural production systems and methods. A symbiotic relation between aquaculture and aquaponics were also researched and optimised and the outcome therefore reflected in the proposed building design. These fish farms should then be able to provide food for the surrounding communities as well as create a surplus, which could be retailed across the country. The information centre within the facilities will inform the public of the importance of fresh water fish and food production opportunities. A range of educational courses in aquaculture will be presented at the designed facility, which will serve to educate and enable both subsistence and commercial farmers to start and optimise their businesses.
3

Hydrogeological characteristics of Hartbeespoort Dam

Davis, Aqueelah January 2017 (has links)
Thesis (M.Sc. (Hydrogeology))--University of the Witwatersrand, Faculty of Science, School of Geosciences, 2017. / Hartbeespoort Dam, the source of irrigation and potable water for the local community of Hartbeespoort area is a vulnerable water resource. The aim of this research was to evaluate the interaction between dam water and groundwater as well as characterise the hydrochemical data from metals and tritium. The former was done through the application of environmental isotopes and the implementation of a long term water balance, while the latter used hydrochemical data to define the spatial distribution of metals and tritium. The results indicated that the dam water is separated from the groundwater in winter. Two sources of mixing were recognized to have occurred downstream of the dam in 2015 but not in the Hartbeespoort dam area. These were identified as artificial through the runoff of agricultural water that was abstracted from the dam and through the pumping of water near the fault. Higher than normal tritium concentration indicated that contamination comes through the Crocodile River after the fault connecting the river to Pelindaba, the nuclear power generation plant south of Hartbeespoort Dam in the Broederstroom area. The Crocodile River showed that the contamination of water by lead, 22.11ppb in summer and 3.8 ppb in winter, and cadmium,2.2 ppb in winter. The Magalies River feeds the dam with copper. All metals accumulate at the dam wall and settles in the sediment, diluting the downstream water. Boreholes near the dam and spring along the fault are vulnerable to contamination. The water balance estimation resulted 18 345 472m3, with a 3.9% error, gain of water to the dam from the groundwater greater than the amount exiting the dam to through groundwater. The groundwater entering the dam is estimated to be 32 517 704m3. The groundwater exiting the dam is estimated at 14 172 232m3. The difference in groundwater showed a decrease of 10 000 000m3 over the 15 year period from 1st October 2000 until the 30th September 2015. Consequently, these results show an increased stress placed on the groundwater presumably due to an increase in groundwater abstraction from agriculture and the expanding mining area. / GR2018
4

The cultivation and harvesting of micro-algal biomass from the Hartbeespoort Dam for the production of biodiesel / Jacobus Petrus Brink.

Brink, Jacobus Petrus January 2011 (has links)
Renewable energy sources such as biomass are becoming more and more important as alternative to fossil fuels. One of the most exciting new sources of biomass is microalgae. The Hartbeespoort Dam, located 37 km west of South Africa’s capital Pretoria, has one of the dense populations of microalgae in the world, and is one of the largest reservoirs of micro-algal biomass in South Africa. The dam has great potential for micro-algal biomass production and beneficiation due to its high nutrient loading, stable climatic conditions, size and close proximity to major urban and industrial centres. There are five major steps in the production of biodiesel from micro-algal biomass-derived oil: the first two steps involve the cultivation and harvesting of micro-algal biomass; which is followed by the extraction of oils from the micro-algal biomass; then the conversion of these oils via the chemical reaction transesterification into biodiesel; and the last step is the separation and purification of the produced biodiesel. The first two steps are the most inefficient and costly steps in the whole biomass-to-liquids (BTL) value chain. Cultivation costs may contribute between 20–40% of the total cost of micro-algal BTL production (Comprehensive Oilgae Report, 2010), while harvesting costs may contribute between 20–30% of the total cost of BTL production (Verma et al., 2010). Any process that could optimize these two steps would bring a biomass-to-liquids process closer to successful commercialization. The aim of this work was to study the cultivation and harvesting of micro-algal biomass from the Hartbeespoort Dam for the production of biodiesel. In order to do this a literature study was done and screening experiments were performed to determine the technical and economical feasibility of cultivation and harvesting methods in the context of a new integrated biomass-to-liquids biodiesel process, whose feasibility was also studied. The literature study revealed that the cyanobacterium Microcystis aeruginosa is the dominant micro-organism species in the Hartbeespoort Dam. The study also revealed factors that promote the growth of this species for possible incorporation into existing and new cultivation methods. These factors include stable climatic conditions, with high water temperatures around 25oC for optimal Microcystis growth; high nutrient loadings, with high phosphorus (e.g. PO43-) and nitrogen concentrations (e.g. NO3-); stagnant hydrodynamic conditions, with low wind velocities and enclosed bays, which promote the proliferation of Microcystis populations; and substrates like sediment, rocks and debris which provide safe protective environments for Microcystis inoculums. The seven screening studies consisted of three cultivation experiments, three harvesting experiments and one experiment to determine the combustion properties of micro-algal biomass. The three cultivation experiments were conducted in three consecutively scaled-up laboratory systems, which consisted of one, five and 135-litre bioreactors. The highest productivity achieved was over a period of six weeks in the 5-litre Erlenmeyer bioreactors with 0.0862 g/L/d at an average bioreactor day-time temperature of 26.0oC and an aeration rate of 1.5 L/min. The three cultivation experiments revealed that closed-cultivation systems would not be feasible as the highest biomass concentrations achieved under laboratory conditions were too low. Open-cultivation systems are only feasible if the infrastructure already exists, like in the case of the Hartbeespoort Dam. It is recommended that designers of new micro-algal BTL biodiesel processes first try to capitalize on existing cultivation infrastructure, like dams, by connecting their processes to them. This will reduce the capital and operating costs of a BTL process significantly. Three harvesting experiments studied the technical feasibility and determined design parameters for three promising, unconventional harvesting methods. The first experiment studied the separation of Hartbeespoort Dam micro-algal biomass from its aqueous phase, due to its natural buoyancy. Results obtained suggest that an optimum residence time of 3.5 hours in separation vessels would be sufficient to concentrate micro-algal biomass from 1.5 to 3% TSS. The second experiment studied the aerial harvesting yield of drying micro-algal biomass (3% TSS) on a patch of building sand in the sun for 24 hours. An average aerial harvesting yield of 157.6 g/m2/d of dry weight micro-algal biomass from the Hartbeespoort Dam was achieved. The third experiment studied the gravity settling harvesting yield of cultivated Hartbeespoort Dam-sourced microalgae as it settles to the bottom of the bioreactor after air agitation is suspended. Over 90% of the micro-algal biomass settled to the bottom quarter of the bioreactor after one day. Cultivated micro-algal biomass sourced from the Hartbeespoort Dam, can easily be harvested by allowing it to settle with gravity when aeration is stopped. Results showed that gravity settling equipment, with residence times of 24 hours, should be sufficient to accumulate over 90% of cultivated micro-algal biomass in the bottom quarter of a separation vessel. Using this method for primary separation could reduce the total cost of harvesting equipment dramatically, with minimal energy input. All three harvesting methods, which utilize the natural buoyancy of Hartbeespoort Dam microalgae, gravity settling, and a combination of sand filtration and solar drying, to concentrate, dewater and dry the micro-algal biomass, were found to be feasible and were incorporated into new integrated BTL biodiesel process. The harvesting processes were incorporated and designed to deliver the most micro-algal biomass feedstock, with the least amount of equipment and energy use. All the available renewable power sources from the Hartbeespoort Dam system, which included wind, hydro, solar and biomass power, were utilized and optimized to deliver minimum power loss, and increase power output. Wind power is utilized indirectly, as prevailing south-easterly winds concentrate micro-algal biomass feedstock against the dam wall of the Hartbeespoort Dam. The hydraulic head of 583 kPa of the 59.4 meter high dam wall is utilized to filter and transport biomass to the new integrated BTL facility, which is located down-stream of the dam. Solar power is used to dry the microalgae, which in turn is combusted in a furnace to release its 18,715 kW of biochemical power, which is used for heating in the power-intensive extraction unit of the processing facility. Most of the processes in literature that cover the production of biodiesel from micro-algal biomass are not thermodynamically viable, because they consume more power than what they produce. The new process sets a benchmark for other related ones with regards to its net power efficiency. The new process is thermodynamically efficient, exporting 20 times more power than it imports, with a net power output of 5,483 kilowatts. The design of a new integrated BTL process consisted of screening the most suitable methods for harvesting micro-algal biomass from the Hartbeespoort Dam and combining the obtained design parameters from these harvesting experiments with current knowledge on extraction of oils from microalgae and production of biodiesel from these oils into an overall conceptual process. Three promising, unconventional harvesting methods from Brink and Marx (2011), a micro-algal oil extraction process from Barnard (2009), and a process from Miao and Wu (2005) to produce biodiesel through the acid-catalyzed transesterification of micro-algal oil, were combined into an integrated BTL process. The new integrated biomass-to-liquids (BTL) process was developed to produce 2.6 million litres of biodiesel per year from harvested micro-algal biomass from the Hartbeespoort Dam. This is enough to supply 51,817 medium-sized automobiles per year or 142 automobiles per day of environmentally friendly fuel. The new BTL facility consists of three sections: a cultivation section where microalgae grow in the 20 km2 Hartbeespoort Dam to a concentration of 160 g/m2 during the six warmest months of the year; a harvesting section where excess water is removed from the micro-algal biomass; a reaction section where fatty acid oils are extracted from the microalgae and converted to biodiesel, and dry biomass rests are combusted to supply heat for the extraction and biodiesel units of the reaction section. The cultivation section consist of the existing Hartbeespoort Dam, which make up the cultivation unit; the harvesting section is divided into a collection unit (dam wall part of the Hartbeespoort Dam), a concentration unit, a filtration unit, and a drying unit; the reaction section consists of an oil extraction unit, a combustion unit, and a biodiesel unit. At a capital cost of R71.62 million (R1.11/L) (±30%), the new proposed BTL facility will turn 933,525 tons of raw biomass (1.5% TSS) into 2,590,856 litres of high quality biodiesel per year, at an annual operating cost of R11.09 million (R4.28/L at 0% producer inflation), to generate R25.91 million (R10.00/L) per year of revenue. At the current diesel price of R10.00/L, the new integrated BTL process is economically feasible with net present values (NPV) of R368 million (R5.68/L) and R29.30 million (R0.45/L) at discount rates of 0% and 10%, respectively. The break-even biodiesel prices are R5.34/L and R7.92/L, for a zero NPV at 0% and 10% discount rates, respectively. The cultivation of micro-algal biomass from the Hartbeespoort Dam is only economical if the growth is allowed to occur naturally in the dam without any additional cultivation equipment. The cultivation of micro-algal biomass in either an open or a closed-cultivation system will not be feasible as the high cost of cultivation will negate the value of biodiesel derived from the cultivated biomass. The utilization of the three promising harvesting methods described in this work is one of the main drivers for making this process economically feasible. At a capital cost of R13.49 million (R37.77/ton of dry weight micro-algal biomass) and a operating cost of R2.00 million per year (R210.63/ton of dry weight micro-algal biomass) for harvesting micro-algal biomass from the Hartbeespoort Dam, harvesting costs account for only 19% and 18% of the overall capital and operating costs of the new process, respectively. This is less than harvesting costs for other comparative processes world-wide, which contribute between 20 and 30% of the overall cost of biomass-to-liquids production. At current fuel prices, the cultivation of micro-algal biomass from and next to the Hartbeespoort Dam is not economical, but the unconventional harvesting methods presented in this thesis are feasible, if incorporated into the new integrated biomass-to-liquids biodiesel process set out in this work. / Thesis (Ph.D. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.
5

The cultivation and harvesting of micro-algal biomass from the Hartbeespoort Dam for the production of biodiesel / Jacobus Petrus Brink.

Brink, Jacobus Petrus January 2011 (has links)
Renewable energy sources such as biomass are becoming more and more important as alternative to fossil fuels. One of the most exciting new sources of biomass is microalgae. The Hartbeespoort Dam, located 37 km west of South Africa’s capital Pretoria, has one of the dense populations of microalgae in the world, and is one of the largest reservoirs of micro-algal biomass in South Africa. The dam has great potential for micro-algal biomass production and beneficiation due to its high nutrient loading, stable climatic conditions, size and close proximity to major urban and industrial centres. There are five major steps in the production of biodiesel from micro-algal biomass-derived oil: the first two steps involve the cultivation and harvesting of micro-algal biomass; which is followed by the extraction of oils from the micro-algal biomass; then the conversion of these oils via the chemical reaction transesterification into biodiesel; and the last step is the separation and purification of the produced biodiesel. The first two steps are the most inefficient and costly steps in the whole biomass-to-liquids (BTL) value chain. Cultivation costs may contribute between 20–40% of the total cost of micro-algal BTL production (Comprehensive Oilgae Report, 2010), while harvesting costs may contribute between 20–30% of the total cost of BTL production (Verma et al., 2010). Any process that could optimize these two steps would bring a biomass-to-liquids process closer to successful commercialization. The aim of this work was to study the cultivation and harvesting of micro-algal biomass from the Hartbeespoort Dam for the production of biodiesel. In order to do this a literature study was done and screening experiments were performed to determine the technical and economical feasibility of cultivation and harvesting methods in the context of a new integrated biomass-to-liquids biodiesel process, whose feasibility was also studied. The literature study revealed that the cyanobacterium Microcystis aeruginosa is the dominant micro-organism species in the Hartbeespoort Dam. The study also revealed factors that promote the growth of this species for possible incorporation into existing and new cultivation methods. These factors include stable climatic conditions, with high water temperatures around 25oC for optimal Microcystis growth; high nutrient loadings, with high phosphorus (e.g. PO43-) and nitrogen concentrations (e.g. NO3-); stagnant hydrodynamic conditions, with low wind velocities and enclosed bays, which promote the proliferation of Microcystis populations; and substrates like sediment, rocks and debris which provide safe protective environments for Microcystis inoculums. The seven screening studies consisted of three cultivation experiments, three harvesting experiments and one experiment to determine the combustion properties of micro-algal biomass. The three cultivation experiments were conducted in three consecutively scaled-up laboratory systems, which consisted of one, five and 135-litre bioreactors. The highest productivity achieved was over a period of six weeks in the 5-litre Erlenmeyer bioreactors with 0.0862 g/L/d at an average bioreactor day-time temperature of 26.0oC and an aeration rate of 1.5 L/min. The three cultivation experiments revealed that closed-cultivation systems would not be feasible as the highest biomass concentrations achieved under laboratory conditions were too low. Open-cultivation systems are only feasible if the infrastructure already exists, like in the case of the Hartbeespoort Dam. It is recommended that designers of new micro-algal BTL biodiesel processes first try to capitalize on existing cultivation infrastructure, like dams, by connecting their processes to them. This will reduce the capital and operating costs of a BTL process significantly. Three harvesting experiments studied the technical feasibility and determined design parameters for three promising, unconventional harvesting methods. The first experiment studied the separation of Hartbeespoort Dam micro-algal biomass from its aqueous phase, due to its natural buoyancy. Results obtained suggest that an optimum residence time of 3.5 hours in separation vessels would be sufficient to concentrate micro-algal biomass from 1.5 to 3% TSS. The second experiment studied the aerial harvesting yield of drying micro-algal biomass (3% TSS) on a patch of building sand in the sun for 24 hours. An average aerial harvesting yield of 157.6 g/m2/d of dry weight micro-algal biomass from the Hartbeespoort Dam was achieved. The third experiment studied the gravity settling harvesting yield of cultivated Hartbeespoort Dam-sourced microalgae as it settles to the bottom of the bioreactor after air agitation is suspended. Over 90% of the micro-algal biomass settled to the bottom quarter of the bioreactor after one day. Cultivated micro-algal biomass sourced from the Hartbeespoort Dam, can easily be harvested by allowing it to settle with gravity when aeration is stopped. Results showed that gravity settling equipment, with residence times of 24 hours, should be sufficient to accumulate over 90% of cultivated micro-algal biomass in the bottom quarter of a separation vessel. Using this method for primary separation could reduce the total cost of harvesting equipment dramatically, with minimal energy input. All three harvesting methods, which utilize the natural buoyancy of Hartbeespoort Dam microalgae, gravity settling, and a combination of sand filtration and solar drying, to concentrate, dewater and dry the micro-algal biomass, were found to be feasible and were incorporated into new integrated BTL biodiesel process. The harvesting processes were incorporated and designed to deliver the most micro-algal biomass feedstock, with the least amount of equipment and energy use. All the available renewable power sources from the Hartbeespoort Dam system, which included wind, hydro, solar and biomass power, were utilized and optimized to deliver minimum power loss, and increase power output. Wind power is utilized indirectly, as prevailing south-easterly winds concentrate micro-algal biomass feedstock against the dam wall of the Hartbeespoort Dam. The hydraulic head of 583 kPa of the 59.4 meter high dam wall is utilized to filter and transport biomass to the new integrated BTL facility, which is located down-stream of the dam. Solar power is used to dry the microalgae, which in turn is combusted in a furnace to release its 18,715 kW of biochemical power, which is used for heating in the power-intensive extraction unit of the processing facility. Most of the processes in literature that cover the production of biodiesel from micro-algal biomass are not thermodynamically viable, because they consume more power than what they produce. The new process sets a benchmark for other related ones with regards to its net power efficiency. The new process is thermodynamically efficient, exporting 20 times more power than it imports, with a net power output of 5,483 kilowatts. The design of a new integrated BTL process consisted of screening the most suitable methods for harvesting micro-algal biomass from the Hartbeespoort Dam and combining the obtained design parameters from these harvesting experiments with current knowledge on extraction of oils from microalgae and production of biodiesel from these oils into an overall conceptual process. Three promising, unconventional harvesting methods from Brink and Marx (2011), a micro-algal oil extraction process from Barnard (2009), and a process from Miao and Wu (2005) to produce biodiesel through the acid-catalyzed transesterification of micro-algal oil, were combined into an integrated BTL process. The new integrated biomass-to-liquids (BTL) process was developed to produce 2.6 million litres of biodiesel per year from harvested micro-algal biomass from the Hartbeespoort Dam. This is enough to supply 51,817 medium-sized automobiles per year or 142 automobiles per day of environmentally friendly fuel. The new BTL facility consists of three sections: a cultivation section where microalgae grow in the 20 km2 Hartbeespoort Dam to a concentration of 160 g/m2 during the six warmest months of the year; a harvesting section where excess water is removed from the micro-algal biomass; a reaction section where fatty acid oils are extracted from the microalgae and converted to biodiesel, and dry biomass rests are combusted to supply heat for the extraction and biodiesel units of the reaction section. The cultivation section consist of the existing Hartbeespoort Dam, which make up the cultivation unit; the harvesting section is divided into a collection unit (dam wall part of the Hartbeespoort Dam), a concentration unit, a filtration unit, and a drying unit; the reaction section consists of an oil extraction unit, a combustion unit, and a biodiesel unit. At a capital cost of R71.62 million (R1.11/L) (±30%), the new proposed BTL facility will turn 933,525 tons of raw biomass (1.5% TSS) into 2,590,856 litres of high quality biodiesel per year, at an annual operating cost of R11.09 million (R4.28/L at 0% producer inflation), to generate R25.91 million (R10.00/L) per year of revenue. At the current diesel price of R10.00/L, the new integrated BTL process is economically feasible with net present values (NPV) of R368 million (R5.68/L) and R29.30 million (R0.45/L) at discount rates of 0% and 10%, respectively. The break-even biodiesel prices are R5.34/L and R7.92/L, for a zero NPV at 0% and 10% discount rates, respectively. The cultivation of micro-algal biomass from the Hartbeespoort Dam is only economical if the growth is allowed to occur naturally in the dam without any additional cultivation equipment. The cultivation of micro-algal biomass in either an open or a closed-cultivation system will not be feasible as the high cost of cultivation will negate the value of biodiesel derived from the cultivated biomass. The utilization of the three promising harvesting methods described in this work is one of the main drivers for making this process economically feasible. At a capital cost of R13.49 million (R37.77/ton of dry weight micro-algal biomass) and a operating cost of R2.00 million per year (R210.63/ton of dry weight micro-algal biomass) for harvesting micro-algal biomass from the Hartbeespoort Dam, harvesting costs account for only 19% and 18% of the overall capital and operating costs of the new process, respectively. This is less than harvesting costs for other comparative processes world-wide, which contribute between 20 and 30% of the overall cost of biomass-to-liquids production. At current fuel prices, the cultivation of micro-algal biomass from and next to the Hartbeespoort Dam is not economical, but the unconventional harvesting methods presented in this thesis are feasible, if incorporated into the new integrated biomass-to-liquids biodiesel process set out in this work. / Thesis (Ph.D. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.
6

A histology-based fish health assessment to determine the health and reproductive status of Clarias gariepinus in the Hartbeespoort Dam, South Africa

Botha, Tarryn Lee 11 February 2014 (has links)
M.Sc. (Zoology) / The freshwater indicator fish species, Clarias gariepinus, was used to assess and compare the health status of fish from the Hartbeespoort Dam (HBPD) and the Groot Marico Bosveld Dam (GM) which was used as a reference site. HBPD is known to be polluted and renowned for its extreme eutrophic state. GM receives water from the Marico River and is said to be in an unmodified natural ecological state. Adult Clarias gariepinus were sampled using gill nets; during low-flow (n=17) and high-flow (n=20) seasons from the HBPD, and once from the GM (n = 20). A histology-based fish health assessment was done using a necropsy based health assessment index and a qualitative and semi-quantitative histological assessment on selected target organs namely the gills, liver, kidney and gonads. Focus was also placed on reproductive health aspects by staging the gonads according to their reproductive development and assessing the motility of activated sperm using computer assisted sperm analysis (CASA). Water samples were analyzed for selected physical parameters and for selected metals. The results showed distinct macroscopic differences in the livers and testes comparing the two sites. Fish from HBPD had fatty livers and the macroscopic morphology of the testes showed abnormalities regarding the interstitial tissue, possibly due to the proliferation of connective tissue. The macroscopic abnormalities of the livers were reflected in the histological assessment, which concluded steatosis, vacuolation, hepatocyte nuclear alterations and the presence of large numbers of melanomacrophage centers (MMCs). Of these alterations, only MMCs and intracellular deposits were found in fish from the GM. When comparing the HBPD low-flow (LF) and high-flow (HF) sampling trips, the fish from the low-flow had more alterations present in all organs. While the CASA results showed that the motility, velocity and progression of sperm were lower in fish from the HBPD for all parameters, results from GM showed the ideal trend expected from the moment of sperm activation until degeneration. The velocity and progression were significantly (p value <0.05) different between HBPD samples and fish from the GM. The water quality showed increased concentrations of selenium, as well as the endocrine disrupting chemicals (EDCs) nonylphenol and di-n-butyl phthalate. According to the selected parameters assessed, it seems like the water of the HBPD has increasing detriment upon fish health.
7

Application of biological sample oxidiser and low-level liquid scintillation counter for the determination of ¹⁴C and ³H content in water from the Hartbeespoort Dam in North-West Province

Khumalo, Lamlile Hlakaniphile Ntando 02 1900 (has links)
The aim of the research study was to evaluate the levels of 14C and 3H radionuclides in Hartbeespoort Dam water and to determine if these radionuclides are within regulatory concerns. Water samples from Hartbeespoort Dam were prepared using the Sample Oxidiser Method and measurements of selected radionuclides were done using Liquid Scintillation Counter Quantulus 1220. The results evaluated suggest that water from Hartbeespoort Dam contains levels of 14C and 3H radionuclides that are within regulatory limits. The highest average concentration for 14C measured was 3.77E+01 (+/-2.47E-01) Bq/L, whereas the highest average concentration measured for 3H was 2.74E+01 (+/- 2.30E-01) Bq/L. The observations made regarding the impacts of climate on the 14C radionuclide were that, the concentration levels were higher during winter season when there was a rain than during rainy seasons. Tritium results showed that the climate conditions did not have any significant impacts on the concentration levels. When the concentrations of these radionuclides are above regulatory levels (14C is 100 Bq/L and 3H is10000 Bq/L), their impacts may cause harm to public`s health and the environment. Therefore, Necsa as a nuclear facility owner and National Nuclear Regulator (NNR) as a regulator are responsible for ensuring the public protection from radioactive effluents that contain not just 3H and 14C, but any radionuclide which may cause harm to public`s health. / Environmental Sciences / M. Sc. (Environmental Science)
8

Investigation of the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei Dam, Roodeplaat Dam and Hartbeespoort Dam in Crocodile (West) and Marico Water Management Area

Mbiza, Noloyiso Xoliswa 02 1900 (has links)
Eutrophication is a nutrient enrichment of dams and lakes. Increased eutrophication in dams results in blooms of cyanobacteria. Cyanobacteria are troublesome as they form massive surface scums, impart taste and odour to the water. Some strains of cyanobacteria such as Microcystis aeruginosa are dangerous to humans and animals. They produce toxins that can kill animals drinking the contaminated water and have also been implicated in human illnesses. The study investigated the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei, Roodeplaat and Hartbeespoort Dams. This was done by interpreting data from April 2010 to March 2012. The conditions in the three dams show that Microcystis produced toxins in the summer season and all the variables analysed were favourable for the production of toxins. The methods deployed to rehabilitate the dams do not completely solve the problems of toxins experienced by the dams. / Environmental Sciences / M. Sc. (Environmental Management)
9

Investigation of the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei Dam, Roodeplaat Dam and Hartbeespoort Dam in Crocodile (West) and Marico Water Management Area

Mbiza, Noloyiso Xoliswa 02 1900 (has links)
Eutrophication is a nutrient enrichment of dams and lakes. Increased eutrophication in dams results in blooms of cyanobacteria. Cyanobacteria are troublesome as they form massive surface scums, impart taste and odour to the water. Some strains of cyanobacteria such as Microcystis aeruginosa are dangerous to humans and animals. They produce toxins that can kill animals drinking the contaminated water and have also been implicated in human illnesses. The study investigated the effectiveness of techniques deployed in controlling cyanobacterial growth in Rietvlei, Roodeplaat and Hartbeespoort Dams. This was done by interpreting data from April 2010 to March 2012. The conditions in the three dams show that Microcystis produced toxins in the summer season and all the variables analysed were favourable for the production of toxins. The methods deployed to rehabilitate the dams do not completely solve the problems of toxins experienced by the dams. / Environmental Sciences / M. Sc. (Environmental Management)
10

Hartbeespoortdam Butterfly Conservancy : an ecological splurge

Pettey, Ryan Patrick 28 May 2004 (has links)
The thesis focuses on different habitable spaces which have been designed to promote the existence of a number of South African butterfly species. The architecture responses to the context as well as to one of the largest insect groups, the order L e p i d o p t e r a. Following a sustainable approach, more ecological knowledge is at the core of the design. Instead of human functional needs driving the design, site components respond to the indigenous spatial character, climate, topography, soils, and vegetation as well as compatibility with the existing cultural context. / Dissertation (MArch(Prof))--University of Pretoria, 2006. / Architecture / unrestricted

Page generated in 0.0619 seconds