• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 9
  • 4
  • Tagged with
  • 71
  • 71
  • 21
  • 18
  • 17
  • 16
  • 16
  • 13
  • 11
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Méthodes numériques de type Volumes Finis sur maillages non structurés pour la résolution de la thermique anisotrope et des équations de Navier-Stokes compressibles

Jacq, Pascal 09 July 2014 (has links) (PDF)
Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques différents. Tout d'abord, l'écoulement autour du véhicule entrant dans l'atmosphère est hypersonique, il est caractérisé par la présence d'un choc fort et provoque un fort échauffement du véhicule. Nous modélisons l'écoulement par les équations de Navier-Stokes compressibles et l'échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé par un bouclier thermique siège de réactions chimiques que l'on nomme communément ablation.<br /><br /> Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique anisotrope. Nous présentons l'extension en trois dimensions de ce schéma ainsi que sa parallélisation.<br /> Nous continuons le manuscrit en abordant l'extension de ce schéma à une équation de diffusion tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l'équation de quantité de mouvement des équations de Navier-Stokes. Nous verrons qu'une pénalisation doit être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des validations numériques.<br /> Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis permettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en réutilisant les deux schémas de diffusion présentés précédemment.

Page generated in 0.0548 seconds