• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Cardiac Output on Oxygen Uptake Kinetics

Grant, Crystelle Kiyoko 10 December 2009 (has links) (PDF)
The purpose of this study was to evaluate increased cardiac output (Q) on oxygen kinetics at exercise intensities above and below the lactate threshold (LT). We hypothesized the increase in Q using head-out water immersion (HOI) while treadmill running would reduce the rate constant of the fast component and reduce the amplitude of the slow component of oxygen kinetics compared with land treadmill running. Subjects (n=10) performed two 6 min exercise bouts at a 15% below and above the LT on a land and underwater treadmill following rest. A single exponential equation [VO2(t) = VO2(b) + A1•(1-e-t/TC1] was used to evaluate VO2. The slow component at the end of exercise was estimated by subtracting (VO2(b) + A1) from the plateau. The mean LT for HOI running 1.80 ± .09 L • min-1 was significantly lower (p < 0.05) than 2.15 ± 1.03 L • min-1 while running on the land. The Q during HOI exercise below and above the LT (16.5 ± 0.6 L • min-1, 18.0 ± 1.2 L • min-1) was significantly higher (p < 0.05) than the Q during exercise below and above the LT on land (11.5 ± 0.8 L • min-1, 13.0 ± 0.7 L • min-1). During HOI exercise below LT time to reach steady-state was delayed (8 ± 2 s). Exercise above LT showed similar phase one time constants for all exercise trials. The amplitude of the slow component was not influenced by HOI. As such, the increase in during HOI exercise did not hastening uptake kinetics.

Page generated in 0.0808 seconds