1 |
The Development and Validation of a Biofidelic Synthetic Eye for the Facial and Ocular CountermeasUre Safety (FOCUS) HeadformKennedy, Eric A. 13 September 2007 (has links)
There are over 1.9 million eye injuries per year in the United States with over 30,000 patients left blind in at least one eye as a result of trauma. Some of the most severe eye injuries can occur in automobile accidents and from sports related impacts. Eye injuries in the military environment are even more prevalent and are generally more severe than eye injuries to civilians. The rate of eye injuries has dramatically increased in warfare in recent years, rising from 2% of all casualties during World War I and World War II to over 13% of all combat injuries in Operation Desert Storm. While many of the conflict-related eye injuries are caused by shrapnel and other debris, nearly 25% of the injuries are also caused by blunt trauma from motor vehicle and helicopter crashes, falling, and direct hits from blunt objects.
In order to develop safety countermeasures effective at preventing these eye injuries, as well as evaluate the eye injury potential of different impacts, it is desirable to have the capability for distinguishing between injurious and non-injurious eye impacts. Current anthropometric test device (ATD) headforms lack instrumentation and facial features to allow detailed assessment of eye or discrete facial injuries. Therefore, the purpose of this dissertation is to present the development and validation of the Facial and Ocular CountermeasUre Safety (FOCUS) headform's synthetic eye and orbit and corresponding eye injury risk criteria. / Ph. D.
|
2 |
Windscreen study using a free moving headform : An investigation of windscreen behaviour when subjected to headform impactWingren, Magdalena January 2011 (has links)
Pedestrian protection performance becomes more and more in focus for the car manufactures and systems to reduce injury risk are under development. A wider understanding of both the present and the future windscreen performance in free moving headform testing is needed to optimize these systems. The purpose of this thesis was therefore to learn and understand windscreen behaviour when subjected to head impact and to gain knowledge of CAE status for head impact in windscreens from a pedestrian point of view. A literature review concluded that there are different ways to model a windscreen. It was found that the computer material models for laminated windscreen glass were not capable of fully representing the behaviour of this material under all impact conditions, particularly the non-linear behaviour after fracture or failure. Experimental testing on three different windscreen models, with a free moving headform in a horizontal impactor, has been performed. Test set up was according to Euro NCAP pedestrian testing protocol and three different windscreen angles were tested. The parameter investigated was curvature and HIC and deformation depth on the windscreen were used as evaluation tools. Deformation was measured with a laser positioned behind the windscreen at impact. Film analysis and integration of headform accelerations were used as comparison. The testing concludes that different curvature alone will not have a big influence on HIC and deformation. Keywords: PVB laminated windscreen, pedestrian, impact, free moving headform
|
3 |
Impact Characteristics Describing Concussive Injury in YouthDawson, Lauren January 2016 (has links)
The incidence of concussive injury has continued to arise annually with up to 3.8 million concussions reported per year (Thurman 1999) and 15% of these injuries occurring with persistent symptoms (Kraus and Chu, 2005). Few studies have examined the differences between youth and adult concussion (Yeates et al, 2012; Gosselin et al, 2010) therefore it is unknown whether youth and adults pose a similar risk of sustaining a concussion following impact. For this reason, the purpose of this study is to determine if differences exist in the dynamic response of the head and brain tissue deformation characteristics between children and adolescents for falls in comparison to adult data which have resulted in concussive injuries.
Patient data was collected from emergency room hospitals across Canada. After exclusion criterion was applied, 11 child and 10 adolescent falls were reconstructed using mathematical (MADYMO) model, physical model (Hybrid III Headforms) and finite element modelling. Both groups were compared to each other as well as an adult group collected by Post et al (2014b) using a one-way ANOVA and Welsh test. The results of this study show that the children produced the lowest values for all variables when compared to the adolescents and adults whereas the adolescents produced the largest (with the exception of MPS where the adolescent and adult MPS was the same). Although all results were above the suggested thresholds for risk of concussive injury, the youth produced the lowest brain tissue strain yet still suffered a concussion. This is important to note as it may suggest that children are at an increased risk of injury at a lower brain tissue strain level. Understanding the differences in parameters influencing concussive injury may aid researchers in comprehending the unique risk for youth at difference ages. This information would be useful in terms of protective equipment design, promoting safe play in games and management of patients following injury.
|
4 |
Development Of CAE-based Methodologies For Designing Head Impact Safety CountermeasuresBiswas, Umesh Chandra 09 1900 (has links) (PDF)
No description available.
|
Page generated in 0.056 seconds