• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative Mapping of QTLs Affecting Oil Content, Oil Composition, and other Agronomically Important Traits in Oat (Avena sativa L.)

Hizbai, Biniam T. 01 November 2012 (has links)
Groat oil content and composition are important quality traits in oats (Avena sativa L). These traits are controlled by many genes with additive effects. The chromosomal regions containing these genes, known as quantitative trait loci (QTL), can be discovered through their close association with markers. This study investigated total oil content and fatty acid components in an oat breeding population derived from a cross between high oil ('Dal') and low oil ('Exeter') parents. A genetic map consisting of 475 DArT (Diversity Array Technology) markers spanning 1271.8 cM across 40 linkage groups was constructed. QTL analysis for groat oil content and composition was conducted using grain samples grown at Aberdeen, ID in 1997. QTL analysis for multiple agronomic traits was also conducted using data collected from hill plots and field plots in Ottawa, ON in 2010. QTLs for oil content, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and linolenic acid (18:3) were identified. Two of the QTLs associated with oil content were also associated with all of the fatty acids examined in this study, and most oil-related QTL showed similar patterns of effect on the fatty acid profile. These results suggest the presence of pleiotropic effects on oil-related traits through influences at specific nodes of the oil synthesis pathway. In addition, 12 QTL-associated markers (likely representing nine unique regions) were associated with plant height, heading date, lodging, and protein content. The results of this study will provide information for molecular breeding as well as insight into the genetic mechanisms controlling oil biosynthesis in oat.
2

Comparative Mapping of QTLs Affecting Oil Content, Oil Composition, and other Agronomically Important Traits in Oat (Avena sativa L.)

Hizbai, Biniam T. 01 November 2012 (has links)
Groat oil content and composition are important quality traits in oats (Avena sativa L). These traits are controlled by many genes with additive effects. The chromosomal regions containing these genes, known as quantitative trait loci (QTL), can be discovered through their close association with markers. This study investigated total oil content and fatty acid components in an oat breeding population derived from a cross between high oil ('Dal') and low oil ('Exeter') parents. A genetic map consisting of 475 DArT (Diversity Array Technology) markers spanning 1271.8 cM across 40 linkage groups was constructed. QTL analysis for groat oil content and composition was conducted using grain samples grown at Aberdeen, ID in 1997. QTL analysis for multiple agronomic traits was also conducted using data collected from hill plots and field plots in Ottawa, ON in 2010. QTLs for oil content, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and linolenic acid (18:3) were identified. Two of the QTLs associated with oil content were also associated with all of the fatty acids examined in this study, and most oil-related QTL showed similar patterns of effect on the fatty acid profile. These results suggest the presence of pleiotropic effects on oil-related traits through influences at specific nodes of the oil synthesis pathway. In addition, 12 QTL-associated markers (likely representing nine unique regions) were associated with plant height, heading date, lodging, and protein content. The results of this study will provide information for molecular breeding as well as insight into the genetic mechanisms controlling oil biosynthesis in oat.
3

Comparative Mapping of QTLs Affecting Oil Content, Oil Composition, and other Agronomically Important Traits in Oat (Avena sativa L.)

Hizbai, Biniam T. January 2012 (has links)
Groat oil content and composition are important quality traits in oats (Avena sativa L). These traits are controlled by many genes with additive effects. The chromosomal regions containing these genes, known as quantitative trait loci (QTL), can be discovered through their close association with markers. This study investigated total oil content and fatty acid components in an oat breeding population derived from a cross between high oil ('Dal') and low oil ('Exeter') parents. A genetic map consisting of 475 DArT (Diversity Array Technology) markers spanning 1271.8 cM across 40 linkage groups was constructed. QTL analysis for groat oil content and composition was conducted using grain samples grown at Aberdeen, ID in 1997. QTL analysis for multiple agronomic traits was also conducted using data collected from hill plots and field plots in Ottawa, ON in 2010. QTLs for oil content, palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and linolenic acid (18:3) were identified. Two of the QTLs associated with oil content were also associated with all of the fatty acids examined in this study, and most oil-related QTL showed similar patterns of effect on the fatty acid profile. These results suggest the presence of pleiotropic effects on oil-related traits through influences at specific nodes of the oil synthesis pathway. In addition, 12 QTL-associated markers (likely representing nine unique regions) were associated with plant height, heading date, lodging, and protein content. The results of this study will provide information for molecular breeding as well as insight into the genetic mechanisms controlling oil biosynthesis in oat.

Page generated in 0.0919 seconds