• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 130
  • 68
  • 38
  • 38
  • 25
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 588
  • 588
  • 133
  • 124
  • 120
  • 107
  • 87
  • 77
  • 70
  • 61
  • 61
  • 60
  • 56
  • 56
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study of Small Hydraulic Diameter Media for Improved Heat Exchanger Compactness

Corbeil, Antoine 21 March 2011 (has links)
Solar radiation offers phenomenal potential for energy conversion with energy densities on the order of 1000W/m2 in locations with regularly clear skies. As always, the difficulty lies in finding a solar-electric conversion technology capable of producing electricity at a competitive cost. The SolarCAT (Solar Compressed Air Turbine) system produces electricity by releasing stored compressed air through a series of turbines with solar dish concentrators providing the required heat for efficient conversion to electricity. To minimize impact on capital cost, high recuperator effectiveness targets are sought but unlike typical fuel-fired micro-turbines, raising the recuperator effectiveness of the solar power system yields a benefit in overall system capital cost. Improving efficiency lowers the size and cost of the largest element of the system, namely the dish. In this study potential techniques for achieving a highly compact heat-transfer media were reviewed. Folded fin, packed beds, micro-tubes, lattice frame structures, metal foams, woven textile, and micro-machining techniques were assessed. Textile structures were selected as an appropriate medium to replace the internal folded fin of the SolarCAT recuperator. The relatively long flow (>150mm) path through the proposed screen wafers requires a model for fully-developed forced convective flow between parallel plates. A mathematical model was developed by integrating the results from the work of several authors in the field of textiles and porous media. #100 mesh sintered screen wafers were brazed between two 0.25mm stainless steel sheets and destructively tested to assess their tensile strength. Although iii optimization of the braze parameters was not completed, it was found that many samples survived exposure to internal pressures in excess of 50MPa. This study found that the use of sintered screen wafers to replace the internal folded fin of the SolarCAT recuperator would have advantages over the current design with respect to both overall recuperator effectiveness, size, and cost. Textile structures can be tailored to have wide range of fluid and heat-transfer properties depending on the application. The manufacturing process is relatively simple and could be cost-effective for high-volume production.
12

Study of Small Hydraulic Diameter Media for Improved Heat Exchanger Compactness

Corbeil, Antoine 21 March 2011 (has links)
Solar radiation offers phenomenal potential for energy conversion with energy densities on the order of 1000W/m2 in locations with regularly clear skies. As always, the difficulty lies in finding a solar-electric conversion technology capable of producing electricity at a competitive cost. The SolarCAT (Solar Compressed Air Turbine) system produces electricity by releasing stored compressed air through a series of turbines with solar dish concentrators providing the required heat for efficient conversion to electricity. To minimize impact on capital cost, high recuperator effectiveness targets are sought but unlike typical fuel-fired micro-turbines, raising the recuperator effectiveness of the solar power system yields a benefit in overall system capital cost. Improving efficiency lowers the size and cost of the largest element of the system, namely the dish. In this study potential techniques for achieving a highly compact heat-transfer media were reviewed. Folded fin, packed beds, micro-tubes, lattice frame structures, metal foams, woven textile, and micro-machining techniques were assessed. Textile structures were selected as an appropriate medium to replace the internal folded fin of the SolarCAT recuperator. The relatively long flow (>150mm) path through the proposed screen wafers requires a model for fully-developed forced convective flow between parallel plates. A mathematical model was developed by integrating the results from the work of several authors in the field of textiles and porous media. #100 mesh sintered screen wafers were brazed between two 0.25mm stainless steel sheets and destructively tested to assess their tensile strength. Although iii optimization of the braze parameters was not completed, it was found that many samples survived exposure to internal pressures in excess of 50MPa. This study found that the use of sintered screen wafers to replace the internal folded fin of the SolarCAT recuperator would have advantages over the current design with respect to both overall recuperator effectiveness, size, and cost. Textile structures can be tailored to have wide range of fluid and heat-transfer properties depending on the application. The manufacturing process is relatively simple and could be cost-effective for high-volume production.
13

Evaluation of ventilation for an office building : Situated in Gävle, Sweden

Bergman, Erik January 2014 (has links)
Since the CO 2-emissions and electricity prices are ever increasing many companies have tried to reduce their energy consumption in order to reduce both CO2-emissions and the cost of using energy. Therefore, in this article an office building situated in Sweden have been investigated with its current ventilation flow and what saving poten-tials can be made from heat recovery and a different ventilation flow in regards to health, energy and cost. Empirical data have been collected to be able to calculate ener-gy savings made by heat recovery and new ventilation flow. A ventilation flow of 25 l/s per office were chosen and that the conference room should have at least 3 l/s per m² the dining room and locker was not investigated thoroughly and therefore a ventilation flow from the recommendations of Sweden was followed. The total flows became, 530 l/s respectively 630 l/s for the top and bottom floor. A rotating heat exchanger with an es-timated efficiency of 80% was used for heat recovery and through the two methods combined an energy reduction up to 96,4 % for heating and 83,4 % from the electricity could be reduced.
14

Study of Small Hydraulic Diameter Media for Improved Heat Exchanger Compactness

Corbeil, Antoine 21 March 2011 (has links)
Solar radiation offers phenomenal potential for energy conversion with energy densities on the order of 1000W/m2 in locations with regularly clear skies. As always, the difficulty lies in finding a solar-electric conversion technology capable of producing electricity at a competitive cost. The SolarCAT (Solar Compressed Air Turbine) system produces electricity by releasing stored compressed air through a series of turbines with solar dish concentrators providing the required heat for efficient conversion to electricity. To minimize impact on capital cost, high recuperator effectiveness targets are sought but unlike typical fuel-fired micro-turbines, raising the recuperator effectiveness of the solar power system yields a benefit in overall system capital cost. Improving efficiency lowers the size and cost of the largest element of the system, namely the dish. In this study potential techniques for achieving a highly compact heat-transfer media were reviewed. Folded fin, packed beds, micro-tubes, lattice frame structures, metal foams, woven textile, and micro-machining techniques were assessed. Textile structures were selected as an appropriate medium to replace the internal folded fin of the SolarCAT recuperator. The relatively long flow (>150mm) path through the proposed screen wafers requires a model for fully-developed forced convective flow between parallel plates. A mathematical model was developed by integrating the results from the work of several authors in the field of textiles and porous media. #100 mesh sintered screen wafers were brazed between two 0.25mm stainless steel sheets and destructively tested to assess their tensile strength. Although iii optimization of the braze parameters was not completed, it was found that many samples survived exposure to internal pressures in excess of 50MPa. This study found that the use of sintered screen wafers to replace the internal folded fin of the SolarCAT recuperator would have advantages over the current design with respect to both overall recuperator effectiveness, size, and cost. Textile structures can be tailored to have wide range of fluid and heat-transfer properties depending on the application. The manufacturing process is relatively simple and could be cost-effective for high-volume production.
15

Study of Small Hydraulic Diameter Media for Improved Heat Exchanger Compactness

Corbeil, Antoine January 2011 (has links)
Solar radiation offers phenomenal potential for energy conversion with energy densities on the order of 1000W/m2 in locations with regularly clear skies. As always, the difficulty lies in finding a solar-electric conversion technology capable of producing electricity at a competitive cost. The SolarCAT (Solar Compressed Air Turbine) system produces electricity by releasing stored compressed air through a series of turbines with solar dish concentrators providing the required heat for efficient conversion to electricity. To minimize impact on capital cost, high recuperator effectiveness targets are sought but unlike typical fuel-fired micro-turbines, raising the recuperator effectiveness of the solar power system yields a benefit in overall system capital cost. Improving efficiency lowers the size and cost of the largest element of the system, namely the dish. In this study potential techniques for achieving a highly compact heat-transfer media were reviewed. Folded fin, packed beds, micro-tubes, lattice frame structures, metal foams, woven textile, and micro-machining techniques were assessed. Textile structures were selected as an appropriate medium to replace the internal folded fin of the SolarCAT recuperator. The relatively long flow (>150mm) path through the proposed screen wafers requires a model for fully-developed forced convective flow between parallel plates. A mathematical model was developed by integrating the results from the work of several authors in the field of textiles and porous media. #100 mesh sintered screen wafers were brazed between two 0.25mm stainless steel sheets and destructively tested to assess their tensile strength. Although iii optimization of the braze parameters was not completed, it was found that many samples survived exposure to internal pressures in excess of 50MPa. This study found that the use of sintered screen wafers to replace the internal folded fin of the SolarCAT recuperator would have advantages over the current design with respect to both overall recuperator effectiveness, size, and cost. Textile structures can be tailored to have wide range of fluid and heat-transfer properties depending on the application. The manufacturing process is relatively simple and could be cost-effective for high-volume production.
16

Simplified Dynamic Boundary Conditions for Numerical Models of Borehole Heat Exchangers

Holmes, Andrew January 2022 (has links)
This work describes the development and validation of a computational model for vertical borehole heat exchangers in residential ground-source heat pump energy systems. Due to the size and shape of vertical borehole heat exchangers, their operation thermally impacts a large volume of surrounding soil and thus discretized models have largely been confined to short-term transient simulations, such as the case of a thermal response test. The proposed model employs a computationally efficient physics-based models at variable spatial dimensions which can be used for long-time simulation of the ground heat transfer. The model can generally be considered as a composition of three separate domains: the borehole domain, which combines one-dimensional, three-dimensional and equations-based physics, the near-field soil domain, which resolves three-dimensional transient heat conduction and the far-field soil domain which is modelled as one-dimensional axisymmetric transient heat conduction. The main purpose of this work is to present each component of the model and validate their behaviours and assumptions through a combination of comparison to experimental data, highly cited published works, and well-known analytical models. The complete composite model ignores the three-dimensional effects of fluid heat transfer, and the axial heat transfer in the far-field in order to reduce the computational effort, and the level of uncertainty introduced by each simplification is explored. Finally, to support the composite model, a new method determining the thermal impact of the borehole operation mentioned previously was devised and presented alongside the model development and validations. This method, based on the previously defined thermal impacting radius, improves the consistency and theoretical foundation of the value’s definition based on a system energy balance, rather than local temperature conditions. / Thesis / Master of Applied Science (MASc)
17

Study of Microchip Power Module Materials with Mini-Channel Heat Exchanger

Cole, Andrew N. January 2009 (has links)
No description available.
18

Heat Transfer Measurements and Optimization Studies Relevant to Louvered Fin Compact Heat Exchangers

Stephan, Ryan Adam 28 August 2002 (has links)
A compact heat exchanger is a device used to transfer thermal energy between two or more fluids. The most extensive use of compact heat exchangers occurs in the commercial trucking industry. Most compact heat exchanger designs contain tubes carrying one fluid and external fins through which passes another fluid. To enhance the fin-side heat transfer in a compact heat exchanger, which is typically the air side of the heat exchanger, louvers are manufactured into the fins. Louvered fins initiate the growth of new boundary layers such that the average convective heat transfer coefficient is higher than that which would occur for a continuous fin. Approximately 85% of the total thermal resistance occurs on the air side of the heat exchanger. To design more space and weight efficient heat exchangers, it is imperative to gain a fundamental understanding of the mechanisms that serve to increase the heat transfer on the air side. This thesis presents the heat transfer results of three scaled-up louvered fin geometries and compares these results to six additional models in which the louver angle, fin pitch and Reynolds number were varied. Two experiments were performed to determine the reference temperature used for the calculation of the heat transfer coefficients. The use of two reference temperatures allowed the effects of the flow field and thermal field to be separated. This thesis also presents details of an optimization study performed for a louvered fin array. The results of the experimental study showed that the hot thermal wakes formed at the entrance louver have an adverse effect on the heat transfer of downstream louvers. Measuring the adiabatic wall temperature of the louvers in the array showed the effect of these thermal wakes. The experimental study showed that the optimal louver geometry was Reynolds number dependent. For the lower two Reynolds numbers of ReLp = 230 and 370, the Fp/Lp = 1.52, q = 27° model was found to be the best performer, which does not agree with previous studies. For ReLp = 1016, the Fp/Lp = 0.91, q = 39° model was shown to have optimal heat transfer performance, which is in agreement with a previous study performed by Chang and Wang (1996). / Master of Science
19

Spatially Resolved Heat Transfer Studies in Louvered Fins for Compact Heat Exchangers

Lyman, Andrew C. 18 September 2000 (has links)
Understanding the mechanisms that serve to increase heat transfer provides valuable knowledge to minimize the size and maximize the performance of compact heat exchangers. This document presents a detailed experimental heat transfer study of six scaled up louvered fin geometries that are typical of those found in modern louvered fin compact heat exchangers. Heat transfer measurements were performed over a range of Reynolds numbers and with two different boundary conditions. A fully heated boundary condition allowed the effects of the thermal field to be observed while an adiabatic boundary condition allowed the effects of the flow field to be observed. The results indicated that the complex thermal and flow field patterns that developed within the louvered fin geometries strongly affected the heat transfer of individual louvers. In the entrance region of the louvered array, the effects of the flow field were dominant while in the fully developed region of the louvered arrays, the effects of the thermal field were dominant. A companion two-dimensional CFD study indicated that the heat transfer trends of the louvers resulting from both the thermal and flow fields were well predicted. Based on heat transfer performance, it was determined that the theta = 27°, Fp/Lp = 1.52 geometry performed the best at Re = 230 and Re = 370, while the theta = 39°, Fp/Lp = 0.91 geometry performed best at Re = 1016. / Master of Science
20

Development of a Minichannel Compact Primary Heat Exchanger for a Molten Salt Reactor

Lippy, Matthew Stephen 31 May 2011 (has links)
The first Molten Salt Reactor (MSR) was designed and tested at Oak Ridge National Laboratory (ORNL) in the 1960's, but recent technological advancements now allow for new components, such as heat exchangers, to be created for the next generation of MSR's and molten salt-cooled reactors. The primary (fuel salt-to-secondary salt) heat exchanger (PHX) design is shown here to make dramatic improvements over traditional shell-and-tube heat exchangers when changed to a compact heat exchanger design. While this paper focuses on the application of compact heat exchangers on a Molten Salt Reactor, many of the analyses and results are similarly applicable to other fluid-to-fluid heat xchangers. The heat exchanger design in this study seeks to find a middle-ground between shell- and-tube designs and new ultra-efficient, ultra-compact designs. Complex channel geometries and microscale dimensions in modern compact heat exchangers do not allow routine maintenance to be performed by standard procedures, so extended surfaces will be omitted and hydraulic diameters will be kept in the minichannel regime (minimum channel dimension between 200 μm and 3 mm) to allow for high-frequency eddy current inspection methods to be developed. High aspect ratio rectangular channel cross-sections are used. Various plant layouts of smaller heat exchanger banks in a "modular" design are introduced. FLUENT was used within ANSYS Workbench to find optimized heat transfer and hydrodynamic performance. With similar boundary conditions to ORNL's Molten Salt Breeder Reactor's shell-and-tube design, the compact heat exchanger interest in this thesis will lessen volume requirements, lower fuel salt volume, and decrease material usage. / Master of Science

Page generated in 0.0813 seconds