• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HSPA12B Promotes Functional Recovery After Ischaemic Stroke Through an eNOS-Dependent Mechanism

Zhao, Yanlin, Liu, Chang, Liu, Jiali, Kong, Qiuyue, Mao, Yu, Cheng, Hao, Li, Nan, Zhang, Xioajin, Li, Chuanfu, Li, Yuehua, Liu, Li, Ding, Zhengnian 01 April 2018 (has links)
Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. Stroke is the leading cause of disability worldwide. HSPA12B, a heat-shock protein recently identified expression specifically in endothelial cells, is able to promote angiogenesis. Here, we have investigated its effects on functional recovery at chronic phase of ischaemic stroke. Ischaemic stroke was induced by 60 min. of middle cerebral artery occlusion in transgenic mice with overexpression of HSPA12B (HSPA12B Tg) and wild-type littermates (WT). HSPA12B Tg mice demonstrated a significant higher survival rate than WT mice within 28 days post-stroke. Significant improved neurological functions, increased spontaneous locomotor activity and decreased anxiety were detected inHSPA12B Tg mice compared with WT controls within 21 days post-stroke. Stroke-induced hippocampal degeneration was attenuated in HSPA12B Tg mice examined at day 28 post-stroke. Interestingly, HSPA12B Tg mice showed enhanced peri-infarct angiogenesis (examined 28 days post-stroke) and hippocampal neurogenesis (examined 7 days post-stroke), respectively, compared to WT mice. The stroke-induced eNOS phosphorylation and TGF-β1 expression were augmented in HSPA12B Tg mice. However, administration with eNOS inhibitor L-NAME diminished the HSPA12B-induced protection in neurological functional recovery and mice survival post-stroke. The data suggest that HSPA12B promoted functional recovery and survival after stroke in an eNOS-dependent mechanism. Targeting HSPA12B expression may have a therapeutic potential for the stroke-evoked functional disability and mortality.
2

HSPA12B Attenuates Cardiac Dysfunction and Remodelling After Myocardial Infarction Through an Enos-Dependent Mechanism

Li, Jingjin, Zhang, Yangyang, Li, Chuanfu, Xie, Jian, Liu, Ying, Zhu, Weina, Zhang, Xiaojin, Jiang, Surong, Liu, Li, Ding, Zhengnian 01 September 2013 (has links)
AimsHSPA12B is a newly discovered and endothelial-cell-specifically expressed heat shock protein. We have reported recently that overexpression of HSPA12B increased endothelial nitric oxide synthase (eNOS) expression in mouse cardiac tissues during endotoxemia. Endothelial NOS has been shown to protect heart from ischaemic injury. We hypothesized that overexpression of HSPA12B will attenuate cardiac dysfunction and remodelling after myocardial infarction (MI) through an eNOS-dependant mechanism.Methods and resultsMI was induced by permanent ligation of the left anterior descending coronary artery in the transgenic mice (Tg) overexpressing hspa12b gene and its wild-type (WT) littermates. Echocardiographic analysis revealed that Tg mice exhibited improvements in cardiac dysfunction and remodelling at 1 and 4 weeks after MI. These improvements were accompanied by a significant decrease in cardiomyocyte apoptosis and increase in capillary and arteriolar densities. Significant up-regulation of eNOS, VEGF, Ang-1, and Bcl-2 was also observed in Tg hearts compared with WT hearts after MI. However, pharmacological inhibition of eNOS abolished the HSPA12B-induced decrease in cardiomyocyte apoptosis and increase in capillary formation after MI. Most importantly, inhibition of eNOS abrogated the protection of HSPA12B against cardiac dysfunction and remodelling after MI.ConclusionsThese data demonstrate for the first time that the overexpression of HSPA12B attenuates cardiac dysfunction and remodelling after MI. This action of HSPA12B was mediated, at least in part, by prevention of cardiomyocyte apoptosis and promotion of myocardial angiogenesis via an eNOS-dependent mechanism. HSPA12B could be a novel target for the management of patients with post-MI cardiac dysfunction and remodelling.
3

Overexpression of HSPA12B Protects Against Cerebral Ischemia/Reperfusion Injury via a PI3K/Akt-Dependent Mechanism

Ma, Yujie, Lu, Chen, Li, Chuanfu, Li, Rongrong, Zhang, Yangyang, Ma, He, Zhang, Xiaojin, Ding, Zhengnian, Liu, Li 01 January 2013 (has links)
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60. min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24. hrs after reperfusion. Blood-brain-barrier (BBB) integrity and activated cellular signaling were examined at 3. hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.
4

HSPA12B Attenuates Cardiac Dysfunction and Remodelling After Myocardial Infarction Through an Enos-Dependent Mechanism

Li, Jingjin, Zhang, Yangyang, Li, Chuanfu, Xie, Jian, Liu, Ying, Zhu, Weina, Zhang, Xiaojin, Jiang, Surong, Liu, Li, Ding, Zhengnian 01 September 2013 (has links)
AimsHSPA12B is a newly discovered and endothelial-cell-specifically expressed heat shock protein. We have reported recently that overexpression of HSPA12B increased endothelial nitric oxide synthase (eNOS) expression in mouse cardiac tissues during endotoxemia. Endothelial NOS has been shown to protect heart from ischaemic injury. We hypothesized that overexpression of HSPA12B will attenuate cardiac dysfunction and remodelling after myocardial infarction (MI) through an eNOS-dependant mechanism.Methods and resultsMI was induced by permanent ligation of the left anterior descending coronary artery in the transgenic mice (Tg) overexpressing hspa12b gene and its wild-type (WT) littermates. Echocardiographic analysis revealed that Tg mice exhibited improvements in cardiac dysfunction and remodelling at 1 and 4 weeks after MI. These improvements were accompanied by a significant decrease in cardiomyocyte apoptosis and increase in capillary and arteriolar densities. Significant up-regulation of eNOS, VEGF, Ang-1, and Bcl-2 was also observed in Tg hearts compared with WT hearts after MI. However, pharmacological inhibition of eNOS abolished the HSPA12B-induced decrease in cardiomyocyte apoptosis and increase in capillary formation after MI. Most importantly, inhibition of eNOS abrogated the protection of HSPA12B against cardiac dysfunction and remodelling after MI.ConclusionsThese data demonstrate for the first time that the overexpression of HSPA12B attenuates cardiac dysfunction and remodelling after MI. This action of HSPA12B was mediated, at least in part, by prevention of cardiomyocyte apoptosis and promotion of myocardial angiogenesis via an eNOS-dependent mechanism. HSPA12B could be a novel target for the management of patients with post-MI cardiac dysfunction and remodelling.
5

Overexpression of HSPA12B Protects Against Cerebral Ischemia/Reperfusion Injury via a PI3K/Akt-Dependent Mechanism

Ma, Yujie, Lu, Chen, Li, Chuanfu, Li, Rongrong, Zhang, Yangyang, Ma, He, Zhang, Xiaojin, Ding, Zhengnian, Liu, Li 01 January 2013 (has links)
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60. min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24. hrs after reperfusion. Blood-brain-barrier (BBB) integrity and activated cellular signaling were examined at 3. hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.

Page generated in 0.0461 seconds