• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 41
  • 25
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 156
  • 50
  • 30
  • 29
  • 28
  • 28
  • 24
  • 23
  • 23
  • 22
  • 22
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fabrication of a thin film resistance heater

Sathya, Santhana January 1999 (has links)
No description available.
22

Test Methods for Evaluating Performance of Solar Units

Vitaliano, William Joseph 01 January 1975 (has links) (PDF)
This report is concerned with the performance of solar hot water units for laboratory and field use. A solar unit is defined as a system consisting of a collector, storage tank, piping system and controls. Older unites typically employ the thermosyphon principle (gravity) while more recent models use a water pump to circulate the water. Basically, the collector absorbs solar radiation and transfers thermal energy to the water flowing in the collector tubing. From the collector, the fluid is pumped to the storage tank at which point the hot water is available for usage. A literature search revealed that very little information was available concerning test procedures. The National Bureau of Standards (NBS) has generated proposed test procedures for separate testing of the collector and storage tank, but they do not include testing of the total system. The only other suggested test procedure found was by Stotter and Robinson, these authors include a discussion of the total system. Stotter and Robinson along with (NBS) provided the starting point for this report. In the report it is shown that qualitative properties are equally as important as quantitative properties. Quantitative properties are defined as temperature, flowrate, solar radiation or insolation, wind velocity and direction. Qualitative properties are defined as shade, weather resistance, corrosion resistance, location and maintenance. To determine which solar unit properties would be useful in comparing performance values, test reports along with the other references on solar unit testing were studied. After a review of all the reference material the following performance parameters were obtained and are believed to be of use in comparing solar units. These parameters are discussed in detail in the text of the report. 1. nth, the practical thermal efficiency 2. pSTOR, the heat storage coefficient 3. Q, the solar unit capacity 4. Ceff, capacity efficiency. It was found from the error analysis that the recommended instrumentation and test procedure, presented herein, should result in less than ± 10% error in the calculation of performance parameters. Temperature measurement error was found to be the largest contributor to the overall error. It is recommended that the test procedure herein be used for Florida Technological University testing of laboratory and field solar units, and the future work be performed to develop a method of rating solar units.
23

Tunable Second Harmonic Generation Devices with an Integrated Micro-Heater

Gan, Yi 10 1900 (has links)
Single-pass frequency conversion by a nonlinear optical crystal is an attractive method to generate coherent radiation in various spectral domains from ultraviolet to mid-infrared. Wavelength converters based on quasi-phase matched (QPM) periodically poled lithium niobate (PPLN) have proved to be important wavelength conversion devices for many useful applications. This thesis develops a novel integration design for temperature controlling and temperature wavelength tuning of a QPM-PPLN waveguide wavelength converter. A Cr/Pt/Au thin film alloy layer is deposited on a PPLN device with a polymer buffer layer to work as a micro-heater and a temperature sensor at the same time. The temperature of the device can be tailored by applying current to the micro-heater layer, which changes the effective period of the QPM grating and thus the QPM wavelength through the thermal optical effect (TOE). The device's temperature can be monitored by measuring the resistance change of the alloy layer. Micro-heater design and mode profile simulation are involved in the thesis. The entire device fabrication process is introduced. Both electrical and optical features of the device are characterized and discussed. In contrast to the conventional temperature tuning method based on a bulky oven, the proposed design has some excellent characteristics such as compact package size and low power consumption. / Thesis / Master of Applied Science (MASc)
24

Parní kotel na dřevní štěpku 88t/h / steam boiler for woody biomass 88t/h

Lučko, Martin January 2012 (has links)
The aim of the work is to design a plain wood combustion boiler of 88 t/h output. Fuelling component analysis has been added to the basic boiler parameters. For given fuel is prepared stechiometric calculations. After making the heat balance of boiler is determined the thermal efficiency. For given output of steam parametrs (temparature, pressure, volume) are designed individual convective surfaces and dimensons of the boiler. It is also made drawings.
25

Optimisation du cycle de fonctionnement d'un chauffe-eau thermodynamique résidentiel / Air Source Heat Pump Water Heaters, modeling, simulation and multi-criteria based optimization

Deutz, Kevin Ruben 26 January 2018 (has links)
Le chauffe-eau thermodynamique (CET), dont le principe repose sur une pompe à chaleur (PAC), est l’une des principales solutions pour répondre à l’enjeu de réduction des consommations énergétiques des bâtiments liées à l’eau chaude sanitaire. Le CET le plus courant sur le marché français est composé d’une PAC sur air extérieur, au R134a, dont le condenseur est de type manteau, entourant le ballon de stockage. Bien que le système arrive à maturité, les performances annuelles semblent encore loin des performances théoriques. Cette thèse a donc pour objectif l’optimisation des performances énergétiques des CET, en partant du CET standard français, selon un principe de compromis technico-économique. Pour cela, un modèle détaillé du CET standard est élaboré. La PAC est modélisée sous Dymola à l’aide de la bibliothèque TIL. Le ballon de stockage est modélisé par une combinaison d’une approche zonale et d’un modèle 1D. Ce modèle détaillé est calibré et validé expérimentalement grâce à des essais d’un CET standard réalisé en enceintes climatiques. Ce modèle est ensuite utilisé pour identifier les principaux gisements d’économie d’énergie. Une première analyse permet d’identifier les paramètres les plus influents sur les performances du CET. Cette sélection conduit ensuite à l’élaboration d’un modèle simplifié, plus apte à étudier des périodes longues de fonctionnement en intégrant des critères de coût et de confort. Une étude spécifique, à l’aide d’un algorithme génétique, permet d’évaluer le potentiel d’optimisation lié au pilotage du CET. Une étude multi-paramétrique montre ensuite que le design des échangeurs joue également un rôle important. Les résultats de ces deux voies prometteuses d’optimisation du CET étant inter-dépendants, une dernière partie consiste en une étude multi-critère. Les résultats montrent qu’avec la nouvelle configuration proposée sont obtenus, un meilleur confort thermique sur une plus large gamme de scénario, une augmentation de COP moyenne annuelle de 37 % et une réduction moyenne de facture électrique de 30 %. / Heat Pump Water Heaters (HPWH) are efficient and fast-developing sanitary hot water production systems relying on a heat pump thermodynamic cycle for heat generation, consequently offering a considerable energy saving potential in the buildings sector. The most forthcoming HPWH on the French market are Air-Source Heat Pump Water Heaters (ASHPWH) composed of an exterior air source R134a heat pump and using a wrap-around type condenser, surrounding the thermal storage tank (TST). However, it is found that although these ASHPWH have reached an important level of maturity, it seems that there is still room for improvement of their energy performance. Consequently, the main objective of this PhD thesis is to search for optimization pathways, starting of from the reference ASHPWH on the French market, leading a better technical and economical compromise in terms of ASHPWH design. To reach this objective, a detailed model is first developed using Dymola (Modelica langage). This model comprises of a zonal model and a 1D model for the TST associated to an air source heat pump modeled with the TIL thermal component modeling library. After model calibration, the model is validated thanks to a large set of experimental tests carried out on a standard ASHPWH in climatic cells. The validated model is then used to identify optimization pathways by carrying out annual simulations and identifying energy performance improvement potentials. It is found out that both thermodynamic cycle performance and improved ASHPWH control logics are major contributors to the final energy performance. Both being highly interdependent and impacting energy performances, but also comfort and ASHPWH cost, the last part of the study consists of a multi-criteria optimization. Finally, a new ASHPWH design is proposed achieving better thermal comfort upon a large variety of user draw-off profiles, achieving a 37 % average annual energy saving and a 30 % reduction of the electrical bill.
26

Power Consumption Analysis of Rotorcraft Environmental Control Systems

Amaya Gonzalez, Hernan Andres 06 1900 (has links)
Helicopters have now become an essential part for civil and military activities, for the next few years a significant increase in the use of this mean of transportation is expected. Unlike many fixed-wing aircraft, helicopters have no need to be pressurized due to their operating at low altitudes. The Environmental Control Systems (ECS) commonly used in fixed-wing aircraft are air cycle systems, which use the engine compressor’s bleed flow to function. These systems are integrated in the aircraft from inception. The ECS in helicopters is commonly added subsequently to an already designed airframe and power plant or as an additional development for modern aircraft. Helicopter engines are not designed to bleed air while producing their rated power, due to this a high penalty in fuel consumption is paid by such refitted systems. A detailed study of the different configurations of ECS for rotorcraft could reduce this penalty by determining the required power resulting from each of the system configurations, and therefore recommend the most appropriate one to be implemented for a particular flight path and aircraft. This study presents the conducted analysis and subsequent simulation of the environmental control system in a selected representative rotorcraft: the Bell206L-4. This investigation seeks to optimize the rotorcraft’s power consumption and energy waste; by taking into consideration the cabin heat load. It consequently aims to minimize these penalties, achieving passenger comfort, an optimally moist air for equipment and a reduction in the environmental impact. For the purpose of this analysis a civil aircraft was chosen for a rotary-wing type. This helicopter was analysed with different air-conditioning packs complying with the current airworthiness requirements. These systems were optimized with the inclusion of different environmental control models, and the cabin heat load model, which provided the best air-conditioning for many conditions and mission scopes, thus reducing the high fuel consumption in engines and hence the emission of gases into the environment. Each of the models was computed in the Matlab-simulink® software. Different case studies were carried out by changing aircraft, the system’s configurations and flight parameters. Comparisons between the different systems and sub-systems were performed. The results of these simulations permitted the ECS configuration selection for optimal fuel consumption. Once validated the results obtained through this model were included in Rotorcraft Mission Energy Management Model (RMEM), a tool designed to predict the power requirements of helicopter systems. The computed ECS model shows that favourable reductions in fuel burn may be achievable if an appropriated configuration of ECS is chosen for a light rotorcraft. The results show that the VCM mixed with engine bleed air is the best configuration for the chosen missions. However, this configuration can vary according to the mission and environment.
27

Roštový kotel na spalování biomasy - 88 t/h; 9,6 MPa; 520 °C / Grate Biomass Boiler - 88 t/h; 9.6 MPa; 520 °C

Střecha, Josef January 2017 (has links)
This master's thesis deals with the design of stoker-fired boiler for combustion of biomass. The main points of work are stoichiometry calculation of combustion, determining the dew point of flue gas, calculation of losses, which ones serves for determination of boiler efficiency, dimension design and detail calculation of thermosetting surfaces. In the last chapter is numbered total balance and real thermal efficiency of boiler.
28

Návrh parního kotle na spalování hnědého uhlí, parametry páry 235 t/h, 14 MPa, 540°C / Stean boiler for sub bituminous coal, steam parametres 235 t/h, 14 MPa, 540°C

Horák, Stanislav January 2014 (has links)
The aim of the work is to design a brown coal combustion boiler of 235 t/h output. The work is divided into several parts. First, stechiometric calculations and calculations enthalpy of air and flue gas are performed. It is calculated heat balance of the boiler, the boiler losses and the thermal efficiency of the boiler is determined. After designing the combustion chamber thermal calculation is made. Then, individual heating surfaces are proposed and at the end of the calculations are controlling the overall energy balance of the boiler. For calculation was design documentation added.
29

Roštový kotel na spalování uhlí a nebo dřevní biomasy o parametrech 200 t / h 9,3 MPa, 520°C / Steam boiler with grate firing , burning coal or wood biomas 200 t/ h, 9,3 MPa 520°C

Čech, Jaroslav January 2015 (has links)
The aim of the work is the design of a grate boiler of 200 t . h-1 output, which will burn brown coal or wood chips. The work is divided into several parts. First, stoichiometric calculation and the calculations enthalpy of flue gases and air are performed. After calculating the heat balance and loss of the boiler was counted boiler efficiency. The design of individual heating surfaces is proposed and at the end are controlled the overall heat balance of the boiler. The calculation is supplemented by drawings.
30

Kotel na spalování hnědého uhlí / Boiler for Brown Coal Combustion

Pavlo, Matej January 2016 (has links)
The aim of the master’s thesis is thermal calculation and dimensional design of boiler of 235 t/h which burns brown coal. The work is divided into several parts. In the first part, stoichiometric calculation and the calculations enthalpy of flue gases and air are performed. After calculating the heat balance and loss of the boiler, the boiler efficiency is counted. In the next part, thermal calculation of combustion chamber is calculated. Subsequently, design of the individual heating surfaces is proposed. Finally, the overall heat balance of the boiler is inspected. The calculation is supplemented by drawing of the boiler.

Page generated in 0.3335 seconds