• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 41
  • 25
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 51
  • 30
  • 30
  • 29
  • 28
  • 24
  • 23
  • 23
  • 23
  • 22
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Roštový kotel s přirozenou cirkulací na spalování směsi dřeva a hnědého uhlí / Grate Boiler for Wood Chips and Coal Combustion

Lauš, Ladislav January 2015 (has links)
The work deals with the constructional and calculation design of the boiler for burning wood and combustion coal in scale (30/70-coal), in load 50 t/h, parameters of steam output p=7,5 MPa, t=480 °C and a temperature of feed water 105 °C. It is a boiler with natural water circulation by evaporation surfaces. In proposal first steichiometric calculations and enthalpic calculations of air and flue gas are performed. Then it is calculated heat balance, the boiler losses and the thermal efficiency is determined. After designing the combustion chamber and dimensions of pulls are determined. In last chapter the overall energy balance are checked. Drawing documentation of steam boiler is a part of the work.
92

Roštový kotel na spalování biomasy o parametrech páry 88 t / h, 9,6 MPa, 520°C / Steam boiler for biomass grate firing ,steam parametrs 88 t / h, 9,6 MPa,520°C

Hlaváč, David January 2015 (has links)
The thesis deals with steam boiler design of 88 tons per hour capacity and with the outlet steam parameters of 9,6 MPa and 520 °C. Fuel for boiler is wood chips. The main focus of the thesis is on heat calculation, design of dimensions and layout of heat surfaces. The thesis also include drawing of steam boiler.
93

Využití alternativních paliv ve vytápění budov / The use of alternative fuels in heating buildings

Juránková, Kristýna January 2016 (has links)
The aim of the diploma thesis "The use of alternative fuels in heating buildings " is the application of the heat sources using alternative fuels for heating of the production hall. The source of heat is a gas boiler, wood chips and dark gas infrared heaters. Appliances are then convection heaters, tubular registers and hot-air units.
94

Roštový kotel na spalování biomasy / Grate Boiler for Biomass Combustion

Kopeček, Marián January 2016 (has links)
The thesis includes design of steam boiler burning woodchips with parameters of steam 88 t/h, 9,6 MPa, 520 °C. For these parameters is processed a heat calculation and dimensional design of boiler.
95

Tepelný výpočet ohřevné trubkové pece / Thermal calculation of direct fired heater

Sénáši, Martin January 2016 (has links)
The main aim of the thesis is to evaluete properties of a simplified thermal calculation of the direct fired heater published in the journal Applied Energy at 2010 and its application to specific industrial cases. At first, general issues of process heaters are talk over. Second, calculation model in cited article is briefly introduced. After that, custom computational model at program Maple is created in accordance with published article. Subsequently, the model is applied to the existing process furnaces in the form of a check calculation. An integral part of the work is also a detailed discussion of the results obtained.
96

Zařízení na výrobu vlákna z termoplastu PET pro použití k 3D tisku metodou FDM / An equipment for PET filament producing for 3D printing usage

Kotačka, Petr January 2016 (has links)
This thesis deals with design of equipment for the production of PET termoplastic fibre to be used in 3D printing by means of FDM method. Concise survey of plastics processing methods is presented herein, furthermore, structural design of equipment with necessary engineering calculations is included as well. Drawing documents with the total economic evaluation is a part of this thesis too.
97

Optimal energy-water nexus management in residential buildings incorporating renewable energy, efficient devices and water recycling

Wanjiru, Evan January 2017 (has links)
Developing nations face insurmountable challenges to reliably and sustainably provide energy and water to the population. These resources are intricately entwined such that decisions on the use of one affects the other (energy-water nexus). Inadequate and ageing infrastructure, increased population and connectivity, urbanization, improved standards of living and spatially uneven rainfall are some of the reasons causing this insecurity. Expanding and developing new supply infrastructure is not sustainable due to sky high costs and negative environmental impact such as increased greenhouse gas emissions and over extraction of surface water. The exponentially increasing demand, way above the capacity of supply infrastructure in most developing countries, requires urgent mitigation strategies through demand side management (DSM). The DSM strategies seek to increase efficiency of use of available resources and reducing demand from utilities in the short, medium and long term. Renewable energy, rooftop rain water harvesting, pump-storage scheme and grey water recycling are some alternatives being used to curb the insecurity. However, renewable energy and rooftop water harvesting are spasmodic in nature hampering their adoption as the sole supply options for energy and water respectively. The built environment is one of the largest energy and water consuming sectors in the world presenting a huge potential towards conserving and increasing efficiency of these resources. For this reason, coupled with the 1970s energy challenges, the concept of green buildings seeking to, among other factors, reduce the consumption of energy and water sprung up. Conventionally, policy makers, industry players and researchers have made decisions on either resource independently, with little knowledge on the effect it would have on the other. It is therefore imperative that optimal integration of alternative sources and resource efficient technologies are implemented and analysed jointly in order to achieve maximum benefits. This is a step closer to achieving green buildings while also improving energy and water security. A multifaceted approach to save energy and water should integrate appropriate resource efficient technology, alternative source and an advanced and reliable control system to coordinate their operation. In a typical South African urban residential house, water heating is one of the most energy and water intensive end uses while lawn irrigation is the highest water intensive end use occasioned by low rainfall and high evaporation. Therefore, seamless integration of these alternative supply and most resource intensive end uses provides the highest potential towards resource conservation. This thesis introduces the first practical and economical attempt to integrate various alternative energy and water supply options with efficient devices. The multifaceted approach used in this research has proven that optimal control strategy can significantly reduce the cost of these resources, bring in revenue through renewable energy sales, reuse waste water and reduce the demand for grid energy, water and waste water services. This thesis is generally divided into cold and hot water categories; both of which energy-water nexus DSM is carried out. Open-loop optimal and closed-loop model predictive (MPC) control strategies that minimize the objective while meeting present technical and operational constraints are designed. In cold water systems, open-loop optimal and MPC strategies are designed to improve water reliability through a pump storage system. Energy efficiency (EE) of the pump is achieved through optimally shifting the load to off-peak period of the time-of-use (TOU) tariff in South Africa. Thereafter, an open-loop optimal control strategy is developed for rooftop rain water harvesting for lawn irrigation. The controller ensures water is conserved by using the stored rain water and ensuring only the required amount of water is used for irrigation. Further, EE is achieved through load shifting of the pump subject to the TOU tariff. The two control strategies are then developed to operate a grey water recycling system that is useful in meeting non-potable water demand such as toilet flushing and lawn irrigation and EE is achieved through shifting of pump's load. Finally, the two control strategies are designed for an integrated rain and grey water recycling for a residential house, whose life cycle cost (LCC) analysis is carried out. The hot water category is more energy intensive, and therefore, the open-loop optimal control strategy is developed to control a heat pump water heater (HPWH) and an instantaneous shower, both powered by grid-tied renewable energy systems. Solar and wind energy are used due to their abundance in South Africa. Thereafter, the MPC strategy is developed to power same devices with renewable energy systems. In both strategies, energy is saved through the use of renewable energy sources, that also bring in revenue through sale of excess power back to the grid. In addition, water is conserved through heating the cold water in the pipes using the instantaneous shower rather than running it down the drain while waiting for hot water to arrive. LCC analysis is also carried out for this strategy. Each of the two control strategies has its strengths. The open loop optimal control is easier and cheaper to implement but is only suitable in cases where uncertainties and disturbances affecting the system do not alter the demand pattern for water in a major way. Conversely, the closed-loop MPC strategy is more complicated and costly to implement due to additional components like sensors, but comes with great robustness against uncertainties and disturbances. Both strategies are beneficial in ensuring security and reliability of energy and water is achieved. Importantly, technology alone cannot have sustainable DSM impact. Public education and awareness on importance of energy and water savings, improved efficiency and effect on supply infrastructure and greenhouse gas emissions are essential. Awareness is also important in enabling the acceptance of these technological advancements by the society. / Thesis (PhD)--University of Pretoria, 2017. / National Hub for Energy Efficiency and Demand Side Management (EEDSM) / University of Pretoria / Electrical, Electronic and Computer Engineering / PhD / Unrestricted
98

Investigations on the Effect of Heater Surface Characteristics on Bubble Dynamics in Subcooled Nucleate Boiling

Sarker, Debasish 29 October 2020 (has links)
Nucleating boiling is a repeating cycle of bubble initiation, growth and departure at many nucleation sites at the heated wall. Thereby, the bubble growth process significantly affects the dynamics of bubble departure. Experiments were performed to study the influence of heater surface characteristics, such as wettability and roughness, on single bubble growth and departure dynamics for natural circulation and upward flow boiling conditions. Self-assembled monolayer (SAM) coating, wet-etching and femtosecond pulsed laser treatment were used to alter the surface wettability and produce nano- and microstructures on stainless steel surfaces with a roughness in the range of micrometers. These surface preparation techniques allowed to separately quantify the effect of surface wettability and roughness on the bubble dynamics. The surface wettability and roughness are represented by the liquid contact angle hysteresis (θhys) and root mean square roughness of the surface (Sq). Boiling experiments were conducted at atmospheric pressure with degassed deionized water at low-subcooling. Stainless steel heater surfaces were vertically oriented during natural circulation boiling. In the experiments, bubbles were generated from an artificial nucleation cavity on the treated stainless steel heater surfaces. High-resolution optical shadowgraphy has been used to record the bubble generation, departure, sliding, detachment and inception of the next bubble. Higher bulk liquid velocity yielded smaller bubble departure diameters and slower bubble growth rates for all heater surface types. The effect of surface wettability on single bubble dynamics was studied for smooth surfaces with different liquid contact angle hysteresis. Low wetting surfaces yielded a greater bubble growth rate and departure diameter. The bubble growth rate and departure diameter were found maximum for an intermediate surface roughness Sq between 0.108 and 0.218 m. The corresponding roughness height is referred to as the ‘optimal roughness height’ in this work. Surface roughness was found very influential to the bubble growth and departure, which can be explained by considering its interaction with the microlayer underneath a bubble. The role of the heater surface parameters for the bubble growth was qualitatively assessed by evaluating the microlayer thickness constant C2. Hence, an improved bubble growth model was derived in this work. The bubble growth model was formulated on the basis of the evaporation of the microlayer beneath a bubble with the dryout area, inertia and heat diffusion controlled bubble growth and condensation at the bubble cap. The model can also predict the superheated liquid layer around a bubble which helps to determine the portion of a bubble that is in contact with the subcooled liquid. As bubble growth Abstract is highly dependent on the effective interactions of heater surface roughness and microlayer, a term Ceff was introduced in the bubble growth model. The effective microlayer thickness constant Ceff incorporates the impact of heater surface characteristics on the bubble growth process until the departure of a bubble. The bubble growth model was utilized in the analysis of high-resolution experimental data of steam bubble growth and the values of Ceff were calculated for different heater surface characteristics. The value of Ceff was found to decrease with the increase of bubble growth rate. A simplified model for the bubble departure criterion was derived from the expressions of forces which act on a nucleating bubble throughout its growth cycle. It was found that 90% of the departing bubbles satisfy the bubble departure criterion model with ±25% deviation. The knowledge gained from this work shall be particularly useful to improve nucleate boiling models for numerical simulations. The findings are also useful for designing heater surfaces in the future.:Abstract v Kurzfassung vii Acknowledgements xiii Abbreviations and Symbols xv Chapter 1: Introduction and Motivation 1 1.1 General overview 1 1.2 Theoretical background 3 1.3 Objectives and outline of the thesis 7 Chapter 2: Fundamentals of Bubble Dynamics in Nucleate Boiling 9 2.1 Bubble growth in nucleate boiling 9 2.2 Bubble growth models 12 2.3 The physical process of bubble departure 16 2.4 Experimental investigations of bubble dynamics 20 2.4.1 Effects of heater surface characteristics 21 2.4.2 Effects of bulk liquid velocity 24 2.5 Chapter conclusion 26 Chapter 3: Heater Surface Preparation and Characterization 27 3.1 Surface properties 27 3.2 Surface preparation 29 3.2.1 Self-assembled monolayer coating 30 3.2.2 High-power pulsed laser irradiation 31 3.2.3 Wet-etching 32 3.3 Surface cleaning 32 3.4 Surface characterization 32 3.4.1 Wettability measurement 32 3.4.2 Roughness measurement 33 3.4.3 Analysis of surface characteristics 34 3.4.4 Uncertainty of surface parameters 38 3.5 Artificial cavity preparation 38 Chapter 4: Experimental Setup and Procedure 41 4.1 Natural circulation boiling (NCB 41 4.1.1 Experimental procedure and measurement techniques 41 4.1.2 Uncertainty analysis 44 4.2 Upward flow boiling (UFB) 45 4.2.1 Experimental procedure and measurement techniques 45 4.2.2 Uncertainty analysis 48 4.3 Image processing 50 Chapter 5: Experimental Results 53 5.1 Introduction to the analysis of the bubble dynamics 53 5.1.1 The bubble life cycle 53 5.1.2 Calculation of the bubble equivalent diameter 55 5.1.3 Bubble dynamics with the increase of heat flux 57 5.1.4 Qualitative assessment of the bubble dynamics for different parameters 60 5.2 Bubble dynamics 61 5.2.1 Effect of heater surface wettability 61 5.2.2 Effect of heater surface roughness 65 5.2.3 Effect of bulk liquid velocity 70 5.3 Bubble departure 76 5.3.1 Effect of heater surface wettablity 76 5.3.2 Effect of heater surface roughness 76 5.3.3 Effect of bulk liquid velocity 78 5.4 Chapter conclusion 79 Chapter 6: Analysis and Model Development 81 6.1 Numerical evaluation of the role of heater surface characteristics 81 6.1.1 Derivation of an improved bubble growth model 86 6.1.2 Calculation of Ceff 82 6.2 Effect of liquid velocity on the bubble growth 93 6.3 Improved modeling of bubble departure 95 6.3.1 Analysis of important parameters 95 6.3.2 Formulation of a bubble departure criterion 100 6.4 Chapter conclusion 102 Chapter 7: Summary and Outlook 105 Bibliography 109 List of Figures 121 List of Tables 127 Appendix: Surface Parameters and Profile 129 / Der Blasenabriss von einer Keimstellenkavität ist ein komplexer Ablösemechanismus und spielt eine wichtige Rolle beim Wärmetransport. Zur Beschreibung der Blasendynamik sind Kenntnisse über den Blasenwachstumsprozess sowie die Vorhersage eines Kriteriums für die Blasenablösung erforderlich. In den existierenden Blasenwachstums- und Blasenablösungsmodellen wird die Oberflächencharakteristik des Heizers bisher nicht berücksichtigt. Im Rahmen dieser Promotion wurden Experimente durchgeführt, um den Einfluss der Heizeroberfläche und der Hauptströmungsgeschwindigkeit auf diese Parameter für eine vertikale Heizfläche zu untersuchen. Hierbei wurden das Naturkonvektionssieden und das aufwärtsgerichtete Strömungssieden betrachtet. Die Experimente wurden mit vollentsalztem Wasser bei einer Unterkühlung zwischen 1,68 und 4,00 K bei Atmosphärendruck und einem aus Edelstahl gefertigten Heizer durchgeführt, dessen Oberfläche anhand der Parameter Oberflächenrauigkeit und Benetzbarkeit charakterisiert ist. Unterschiedliche Oberflächenbearbeitungstechniken, wie Beschichtung durch Self-Assembled Monolayer (SAM), Nass-Ätzen und Hochleistungspuls-Laserbestrahlung wurden genutzt, um die Oberflächenbenetzung und –rauigkeit zu modifizieren. Der Unterschied zwischen dem gemessenen Fortschritts- (θadv) und Rückzugskontaktwinkel (θrec) der Flüssigkeit wird als Flüssigkeitskontaktwinkelhysterese (θhys) bezeichnet und beschreibt die Oberflächenbenetzbarkeit. Die Oberflächenrauigkeit wurde durch ein Konfokal-Mikroskop bestimmt und durch das gemittelte Quadrat der Rauigkeit (Sq) und den Maximalwert der Rauigkeit (St) definiert. Insgesamt wurden 18 unterschiedliche Heizoberflächen mit einer Größe von 130 x 20 mm² untersucht. Davon kamen jeweils die Hälfte für das Naturkonvektionssieden bzw. aufwärtsgerichtetes Strömungssieden zur Anwendung. Der Einfluss der Oberflächenbenetzbarkeit auf die Blasendynamik wurde für polierte Oberflächen (Sq  0,01 μm) analysiert. Die Wirkung der Oberflächenrauigkeit auf die Blasendynamik wurde für konstante Flüssigkeitskontaktwinkelhysteresen von 40,05°±1,5° und 59,97°±1,5° für Naturzirkulation und Strömungssieden untersucht. Eine künstliche zylindrische Kavität mit einer Fläche von 1963,5 m² und einer Tiefe von 50 m wurde mittels Mikrolaser in die Heizoberflächen eingebracht, um die Blasen in einer spezifischen Position zu erzeugen. Während des Naturkonvektionssiedens betrug die Wärmestromdichte 19,22 bis 30,29 kW/m². Bei den Experimenten mit aufwärtsgerichtetem Strömungssieden wurde die Hauptströmungsgeschwindigkeit im Bereich von 0,052 bis 0,183 m/s variiert und eine Appendix: Surface Parameters and Profile Wärmestromdichte zwischen 39,41 und 45,47 kW/m² aufgeprägt. Daraus resultierten insgesamt 87 Experimentalserien. Um den Blasenlebenszyklus zu erfassen, wurde hochauflösende Bildgebungstechnik verwendet. Mit der Bildverarbeitungssoftware ImageJ wurden die erfassten Videos weiterverarbeitet. Die Temperatur der Hauptströmung wurde mit Typ-K Thermoelementen gemessen. Die zeit- und ortsgemittelten Heizerwandtemperaturen wurden für die Naturzirkulation durch Infrarotthermografie und für das aufwärtsgerichtete Strömungssieden durch Typ-K Thermoelemente erfasst. Die mittlere Flüssigkeitsgeschwindigkeit wurde bei der Naturzirkulation mittels Particle Image Velocimetry (PIV) und beim Strömungssieden mittels Coriolis-Durchflusszähler bestimmt. Eine hochauflösende optische Schattenbildtechnik diente zur Aufzeichnung der Hauptphasen des Blasenlebenszyklus: Blasenerzeugung, Blasenwachstum, Blasenablösung, Blasengleiten und Blasenabriss. In dieser Arbeit wurden die der Blasenablösung vorrausgehenden Phasen untersucht. Blasenhöhe, Blasenbreite, Blasenbasisdurchmesser und Schwerpunkt der Blase wurden mit Hilfe der Bildverarbeitung ermittelt. Der blasenäquivalente Durchmesser wurde mittels des geometrischen Mittelwertes, der Blasenbreite und der Blasenhöhe berechnet. Basierend auf den Messdaten können folgende Erkenntnisse für das Blasenwachstum und den Blasenablösemechanismus postuliert werden: (i) Eine höhere Wärmeströmedichte führen zu größen Blasen und kürzeren Wachstumsperioden. Der Einfluss der Oberflächenbenetzbarkeit und der Oberflächenrauigkeit auf die Blasendynamik zeigt ähnliche Tendenzen für Naturkonvektion und aufwärtsgerichtetes Strömungssieden. (ii) Eine höhere Flüssigkeitskontaktwinkelhysterese führt zu einer schnelleren Expansion der Blasenbasis und zu einem schnellern Blasenwachstum. Für gut benetzbare Oberflächen bewegt sich der Blasenschwerpunkt schneller entlang der Strömungsrichtung. Für Oberflächen mit geringer Benetzbarkeit ist die Blasengröße vor der Blasenablösung größer und die Ablöseperiode länger. Der mittlere Blasenablösedurchmesser für unterschiedliche Hauptströmungsgeschwindigkeiten der Flüssigkeit erhöht sich von 0,75 auf 1,75 mm bei zunehmender Flüssigkeitskontaktwinkelhysterese von 42,32° auf 62,30°. (iii) Eine, bezogen auf die Mikrogrenzschichtdicke, optimale Oberflächenrauigkeit erhöht die Blasenwachstumsrate und die Blasengröße. Dieses Ergebnis ist bisher einzigartig bei der Untersuchung der Einzelblasendynamik beim Blasensieden. Die Expansion der Blasenbasis und der Blasenwachstumsrate erreicht ein Maximum für das gemittelte Quadrat der Rauigkeit (Sq) im Bereich zwischen 0,156 und 0,202 m für Naturzirkulation. Für aufwärtsgerichtetes Strömungssieden war die Expansion der Blasenbasis und die Blasenwachstumsrate für Sq-Werte zwischen 0,108 und 0,218 m maximal. Der Blasenablösedurchmesser wurde für einen großen Bereich der Hauptströmungsgeschwindigkeiten und Wärmestromedichte gemittelt. Das Maximum des mittleren Ablösedurchmessers wurde für die Oberfläche mit einem Wert von Sq = 0,218 m erreicht. Die Oberflächenrauigkeit erweitert die Wärmeübertragungsoberfläche neben der Blasenbasis. Der Einfluss der Oberflächenrauigkeitshöhe auf die Blasen hängt von der Mikrogrenzschichtdicke sowie vom Blasenbasisradius ab. Das Modell der Mikrogrenzschichtdicke von Cooper und Lloyd [1] und die konzeptionelle Idee zur Störung der Mikrogrenzschicht durch die Rautiefe von Sriraman [2] wurden analysiert. Es wurde nachgewiesen, dass die Oberflächenrauigkeit die effektive Mikrogrenzschichtdicke und die dazugehörige Wärmeübertragung beeinflusst. (iv) Es wurden geringere Blasenwachstumsraten für höhere Hauptströmungs-geschwindigkeiten gemessen. Weiterhin reduzieren sich der Blasenablösedurchmesser sowie Ablöseperioden mit zunehmender Hauptströmungsgeschwindigkeit bei unterschiedlichen Wärmeoberflächencharakteristiken. Bei niedrigen Hauptströmungs-geschwindigkeiten im Bereich zwischen ungefähr 0,052 und 0,16 m/s reduziert sich der durchschnittliche Blasenablösedurchmesser deutlich. Die experimentellen Ergebnisse zeigen einen wesentlichen Einfluss der Oberflächenbeschaffenheit auf das Blasenwachstum und den Ablöseprozess beim Blasensieden. Um diesen Einfluss numerisch zu charakterisieren, wurde ein neues Blasenwachstumsmodel entwickelt. Existierende Blasenwachstumsmodelle berücksichtigen den umfangreichen Einfluss der Oberfläche des Heizers bisher nicht. Das vorgeschlagene Model bezieht die plausibelsten Mechanismen des Blasensiedens mit ein. Dazu zählen: Mikrogrenzschichtverdampfung im Bereich der Austrocknung, trägheits- und wärmediffusionskontrolliertes Blasenwachstum und Kondensation an der Blasenoberseite. Das Modell berücksichtigt, dass die überhitzte Flüssigkeitsschicht an der Heizerwand durch die wachsende Blase nach außen verdrängt wird und die so gestreckte Flüssigkeitsschicht einen Teil der Blase einhüllt. Kondensation erfolgt an der Blasengrenze, die in Kontakt mit der unterkühlten Flüssigkeit steht, und demzufolge mit der überhitzen Flüssigkeitsschicht nicht in Kontakt kommt. Das vorgeschlagene Blasenwachstumsmodel arbeitet mit drei Konstanten für die beschriebenen Wärmeübertragungsmechanismen beim Blasenwachstum. Dabei handelt es sich um eine Konstante für die effektive Mikrogrenzschichtdicke (Ceff ), eine weitere Konstante 𝑏 ́ für die Wärmediffusion hin zur Blase und der Trägheit sowie letztendlich einer Konstante S zur Abbildung des Kondensationswärmeübergangs, anhand der Beschreibung des Anteils der Blase, welcher in Kontakt mit der unterkühlten Flüssigkeit steht. Die effektive Mikrogrenzschichtdickenkonstante (Ceff) definiert den Einfluss der Heizoberflächencharakteristik auf die Verdampfung der Mikrogrenzschicht und somit die Blasenwachstumsrate beim Blasensieden. Die numerisch berechnete und experimentell gemessene Blasengröße wurde verglichen, um die Mikrogrenzschichtdickenkonstante Ceff zu definieren. Der Einfluss der Kondensation auf Ceff wurde geprüft.:Abstract v Kurzfassung vii Acknowledgements xiii Abbreviations and Symbols xv Chapter 1: Introduction and Motivation 1 1.1 General overview 1 1.2 Theoretical background 3 1.3 Objectives and outline of the thesis 7 Chapter 2: Fundamentals of Bubble Dynamics in Nucleate Boiling 9 2.1 Bubble growth in nucleate boiling 9 2.2 Bubble growth models 12 2.3 The physical process of bubble departure 16 2.4 Experimental investigations of bubble dynamics 20 2.4.1 Effects of heater surface characteristics 21 2.4.2 Effects of bulk liquid velocity 24 2.5 Chapter conclusion 26 Chapter 3: Heater Surface Preparation and Characterization 27 3.1 Surface properties 27 3.2 Surface preparation 29 3.2.1 Self-assembled monolayer coating 30 3.2.2 High-power pulsed laser irradiation 31 3.2.3 Wet-etching 32 3.3 Surface cleaning 32 3.4 Surface characterization 32 3.4.1 Wettability measurement 32 3.4.2 Roughness measurement 33 3.4.3 Analysis of surface characteristics 34 3.4.4 Uncertainty of surface parameters 38 3.5 Artificial cavity preparation 38 Chapter 4: Experimental Setup and Procedure 41 4.1 Natural circulation boiling (NCB 41 4.1.1 Experimental procedure and measurement techniques 41 4.1.2 Uncertainty analysis 44 4.2 Upward flow boiling (UFB) 45 4.2.1 Experimental procedure and measurement techniques 45 4.2.2 Uncertainty analysis 48 4.3 Image processing 50 Chapter 5: Experimental Results 53 5.1 Introduction to the analysis of the bubble dynamics 53 5.1.1 The bubble life cycle 53 5.1.2 Calculation of the bubble equivalent diameter 55 5.1.3 Bubble dynamics with the increase of heat flux 57 5.1.4 Qualitative assessment of the bubble dynamics for different parameters 60 5.2 Bubble dynamics 61 5.2.1 Effect of heater surface wettability 61 5.2.2 Effect of heater surface roughness 65 5.2.3 Effect of bulk liquid velocity 70 5.3 Bubble departure 76 5.3.1 Effect of heater surface wettablity 76 5.3.2 Effect of heater surface roughness 76 5.3.3 Effect of bulk liquid velocity 78 5.4 Chapter conclusion 79 Chapter 6: Analysis and Model Development 81 6.1 Numerical evaluation of the role of heater surface characteristics 81 6.1.1 Derivation of an improved bubble growth model 86 6.1.2 Calculation of Ceff 82 6.2 Effect of liquid velocity on the bubble growth 93 6.3 Improved modeling of bubble departure 95 6.3.1 Analysis of important parameters 95 6.3.2 Formulation of a bubble departure criterion 100 6.4 Chapter conclusion 102 Chapter 7: Summary and Outlook 105 Bibliography 109 List of Figures 121 List of Tables 127 Appendix: Surface Parameters and Profile 129
99

Carbon Nanotube Sheet Synthesis and Applications Based on the Floating Catalyst Chemical Vapor Deposition System

Chen, Rui 22 August 2022 (has links)
No description available.
100

An Optimal Control Approach For Determiniation Of The Heat Loss Coefficient In An Ics Solar Domestic Water Heating System

Gil, Camilo 01 January 2010 (has links)
Water heating in a typical home in the U.S. accounts for a significant portion (between 14% and 25%) of the total home's annual energy consumption. The objective of considerably reducing the home's energy consumption from the utilities calls for the use of onsite renewable energy systems. Integral Collector Storage (ICS) solar domestic water heating systems are an alternative to help meet the hot water energy demands in a household. In order to evaluate the potential benefits and contributions from the ICS system, it is important that the parameter values included in the model used to estimate the system's performance are as accurate as possible. The overall heat loss coefficient (Uloss) in the model plays an important role in the performance prediction methodology of the ICS. This work presents a new and improved methodology to determine Uloss as a function of time in an ICS system using a systematic optimal control theoretic approach. This methodology is based on the derivation of a new nonlinear state space model of the system, and the formulation of a quadratic performance function whose minimization yields estimates of Uloss values that can be used in computer simulations to improve the performance prediction of the ICS system, depending on the desired time of the year and hot water draw profile. Simulation results show that predictions of the system's performance based on these estimates of Uloss are considerably more accurate than the predictions based on current existing methods for estimating Uloss.

Page generated in 0.0406 seconds