Spelling suggestions: "subject:"heating anda ventilation control"" "subject:"heating ando ventilation control""
1 |
Anticipation control of domestic heating systemsFoster, Jimmie J. L., 1933- January 1958 (has links)
No description available.
|
2 |
A framework for HVAC control at a tertiary institutionBritz, Eugene Andrew 10 November 2005 (has links)
Most utility's and electricity resellers stimulate changes in their load shape through various demand side management activities. The most common way of altering their load shape is through the implementation of different tariff structures. The thesis investigates the effect of combining hot water load control with heating ventilation and air-conditioning load control to reduce the electricity costs due to a demand tariff that is a direct result of demand side management. The entire study is focused on the demand tariff of the University of Pretoria. Although the study was done on the University of Pretoria the methods developed are universal and can be implemented in any situation where hot water load control and heating ventilation and air-conditioning load control are to be combined. The study presents a detailed literature study on the current developments in the field of hot water and heating ventilation and air-conditioning load control. No current work could be found in which the two control methods are combined. Models were developed for controlling the electricity load and for determining the savings. The heating ventilation and air-conditioning load's and the hot water load's uncontrolled load models respectively had a mean absolute percentage errors of 3.83% and 3.2%. The forecasting method used to determine the available energy for pre-cooling and the start time of shedding had a mean absolute error of 3.2%. A case study of the University of Pretoria was done. The effect of using only hot water load control is presented. The case study was expanded to include structural thermal energy storage and then water thermal energy storage. This expansion was done using the HV AC system in combination with the hot water load control system. With an only 10.3% contribution to the university's maximum demand, the hot water load control reduced the university's electricity account (energy + demand) by 5.44%. The heating ventilation and air conditioning load contribute to 6% of the university's maximum demand. With the structural thermal energy storage using the heating ventilation and air conditioning system, the savings increased to 6.12%. With the addition of a 750m3 water thermal energy storage tank to the heating ventilation and air-conditioning system, the savings increased to 7.14%. / Dissertation (MEng (Electrical Engineering))--University of Pretoria, 2005. / Electrical, Electronic and Computer Engineering / unrestricted
|
3 |
Validation and refinement of a dynamic digital model of a fan coil heating systemAnand, N. K January 2011 (has links)
Photocopy of typescript. / Digitized by Kansas Correctional Industries
|
4 |
Wake survey behind a rotating ventilatorRashid, Dewan Md. Harunur, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2002 (has links)
With environmental concern growing in both affluent and developing countries, roof top ventilators, a form of natural ventilation requiring only wind energy to ensure quality air circulation and comfort is becoming a considered choice of many households and industries. Unfortunately, however, many of these ventilators have evolved through trial and error and the flow physics associated with these ventilators is barely understood. The present experimental project was, therefore, undertaken as part of UNSW- Industry collaboration program funded under an Australian Research Council Grant to explore whether the aerodynamics forces acting on these ventilators during their operation could be obtained. A commercial roof top ventilator supplied by industry was, therefore, tested in an open jet wind tunnel of the University of New South Wales and the results are presented in this thesis. A novel feature of this project is the examination of the suitability of ???the three dimensional wake traverse??? technique to the wake of rotating ventilator. This technique has so far been applied with limited success to the wake of lifting bodies of fixed wing configuration only. In the absence of adequate data in the literature on rotating ventilator, the aerodynamics force components obtained by this technique have been compared against force balance measurements. The results show that the wake traverse technique is capable of determining lift and total drag forces associated with the ventilator flow during its operation from the pressure and velocity information gathered downstream of a ventilator in its wake. Generally, from these data, the technique also allows isolation of the profile and induced components of the drag force. However, from the induced drag value, while it is possible to determine the lift force, it is however, found that a more accurate value of lift force can be evaluated using axial vorticity formulation. The availability of the above technique which does not require measurements on the test specimen itself, will aid in providing a cost efficient investigation of the aerodynamic forces and consequently the performance of a roof top ventilator.
|
5 |
Wake survey behind a rotating ventilatorRashid, Dewan Md. Harunur, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2002 (has links)
With environmental concern growing in both affluent and developing countries, roof top ventilators, a form of natural ventilation requiring only wind energy to ensure quality air circulation and comfort is becoming a considered choice of many households and industries. Unfortunately, however, many of these ventilators have evolved through trial and error and the flow physics associated with these ventilators is barely understood. The present experimental project was, therefore, undertaken as part of UNSW- Industry collaboration program funded under an Australian Research Council Grant to explore whether the aerodynamics forces acting on these ventilators during their operation could be obtained. A commercial roof top ventilator supplied by industry was, therefore, tested in an open jet wind tunnel of the University of New South Wales and the results are presented in this thesis. A novel feature of this project is the examination of the suitability of ???the three dimensional wake traverse??? technique to the wake of rotating ventilator. This technique has so far been applied with limited success to the wake of lifting bodies of fixed wing configuration only. In the absence of adequate data in the literature on rotating ventilator, the aerodynamics force components obtained by this technique have been compared against force balance measurements. The results show that the wake traverse technique is capable of determining lift and total drag forces associated with the ventilator flow during its operation from the pressure and velocity information gathered downstream of a ventilator in its wake. Generally, from these data, the technique also allows isolation of the profile and induced components of the drag force. However, from the induced drag value, while it is possible to determine the lift force, it is however, found that a more accurate value of lift force can be evaluated using axial vorticity formulation. The availability of the above technique which does not require measurements on the test specimen itself, will aid in providing a cost efficient investigation of the aerodynamic forces and consequently the performance of a roof top ventilator.
|
6 |
Effect of control parameters on energy consumption of a room heating systemDesai, Nainan Vijay January 2011 (has links)
Photocopy of typescript. / Digitized by Kansas Correctional Industries
|
7 |
Perceived thermal comfort and energy conservation strategies in residential heatingTurner, Carolyn S. January 1985 (has links)
The perception of thermal comfort is an important factor influencing the acceptability of residential heating strategies. The perceived thermal comfort may affect a person's inclination to try a strategy or to use it on a long-term basis. In the study, perceived thermal comfort was assessed in relation to room temperature, humidity, clothing worn, preferred room temperatures, personal control over the temperatures, and energy consumption. The relationships among these variables were examined for five families participating in a live-in study comparing five residential heating strategies. The strategies tested included closing off bedroom vents/doors, setting the thermostat at 65°F, and the use of a solar greenhouse and a woodstove as supplemental heat sources. The families lived in a retrofitted solar test house for a period of four to six weeks. The house was equipped with a computer which monitored 37 channels of information at ten-second intervals and recorded the data hourly. The data collected included temperatures in every room, inside and outside humidity, wind velocity, and other variables that interplay in comfort levels and energy use. The ten adult respondents completed daily and weekly questionnaires containing Likert-type scales of thermal comfort and checklists of clothing worn. The results suggest the following conclusions: 1) the use of a residential setting to measure thermal comfort under varying environmental conditions can be successfully accomplished, 2) psychological variables such as personal control should be considered and tested by persons involved in standards development for the thermal environment, 3) the ability and experience of the persons to use a strategy can affect the achieved energy saving benefits of the strategy, 4) personal preference in the amount of personal effort a person is willing or able to give will impact on the decision on whether to use certain strategies, 5) heating strategies that can produce a direct source of heat or at least some warmer areas were rated higher by the project participants, and 6) weather can play an important role in the effectiveness of the solar greenhouse as a heating source. / Ph. D. / incomplete_metadata
|
8 |
"D_PID" method for on-demand air conditioning system control in meetings, incentives, conventions and exhibition (M.I.C.E.) building / DPID method for on-demand air conditioning system control in meetings, incentives, conventions and exhibition (M.I.C.E.) buildingLei, Tong Weng January 2009 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Electronics Engineering
|
9 |
A Feasibility Study of Model-Based Natural Ventilation Control in a Midrise Student Dormitory BuildingGross, Steven James 01 January 2011 (has links)
Past research has shown that natural ventilation can be used to satisfy upwards of 98% of the yearly cooling demand when utilized in the appropriate climate zone. Yet widespread implementation of natural ventilation has been limited in practice. This delay in market adoption is mainly due to lack of effective and reliable control. Historically, control of natural ventilation was left to the occupant (i.e. they are responsible for opening and closing their windows) because occupants are more readily satisfied when given control of the indoor environment. This strategy has been shown to be effective during summer months, but can lead to both over and under ventilation, as well as the associated unnecessary energy waste during the winter months. This research presents the development and evaluation of a model-based control algorithm for natural ventilation. The proposed controller is designed to modulate the operable windows based on ambient temperature, wind speed, wind direction, solar radiation, indoor temperature and other building characteristics to ensure adequate ventilation and thermal comfort throughout the year without the use of mechanical ventilation and cooling systems. A midrise student dormitory building, located in Portland OR, has been used to demonstrate the performance of the proposed controller. Simulation results show that the model-based controller is able to reduce under-ventilated hours to 6.2% of the summer season (June - September) and 2.5% of the winter (October - May) while preventing over-heating during 99% of the year. In addition, the model-based-controller reduces the yearly energy cost by 33% when compared to a conventional heat pump system. As a proactive control, model-based control has been used in a wide range of building control applications. This research serves as proof-of-concept that it can be used to control operable windows to provide adequate ventilation year-round without significantly affecting thermal comfort. The resulting control algorithm significantly improves the reliability of natural ventilation design and could lead to a wider adoption of natural ventilation in appropriate climate zones.
|
Page generated in 0.1771 seconds