• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maximum heat transfer rate density from a rotating multiscale array of cylinders

Ogunronbi, Oluseun Ifeanyi 11 July 2011 (has links)
This work investigated a numerical approach to the search of a maximum heat transfer rate density (the overall heat transfer dissipated per unit of volume) from a two-dimensional laminar multiscale array of cylinders in cross-flow under an applied fixed pressure drop and subject to the constraint of fixed volume. It was furthermore assumed that the flow field was steady state and incompressible. The configuration had two degrees of freedom in the stationary state, that is, the spacing between the cylinders and the diameter of the smaller cylinders. The angular velocity of the cylinders was in the range 0 ≤ ϖ, ≤ 0.1. Two cylinders of different diameters were used, in the first case, the cylinders were aligned along a plane which lay on their centrelines. In the second case, the cylinder leading edge was aligned along the plane that received the incoming fluid at the same time. The diameter of the smaller cylinder was fixed at the optimal diameter obtained when the cylinders were stationary. Tests were conducted for co-rotating and counterrotating cylinders. The results were also compared with results obtained in the open literature and the trend was found to be the same. Results showed that the heat transfer from a rotating array of cylinders was enhanced in certain cases and this was observed for both directions of rotation from an array which was aligned on the centreline. For rotating cylinders with the same leading edge, there is heat transfer suppression and hence the effect of rotation on the maximum heat transfer rate density is insignificant. This research is important in further understanding of heat transfer from rotating cylinders, which can be applied to applications ranging from contact cylinder dryers in the chemical processes industry and rotating cylinder electrodes to devices used for roller hearth furnaces. / Dissertation (MEng)--University of Pretoria, 2011. / Mechanical and Aeronautical Engineering / unrestricted
2

Constitutive Modeling of Superelastic Shape Memory Alloys Considering RateDependent Non-Mises Tension-torsion Behavior

Taheri Andani, Masood 27 November 2013 (has links)
No description available.

Page generated in 0.0673 seconds