• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 39
  • 20
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GROWTH AND MYOSIN HEAVY CHAIN EXPRESSION IN THE WHITE MUSCLE OF JUVENILE WALLEYE (Sander vitreus)

Dhillon, Rashpal 19 February 2009 (has links)
Walleye are an important recreational and commercial fish species that are distributed over an expansive geographic range across North America. However, its palatable white flesh and appeal to anglers have lead to declines in natural populations throughout Canada and the United States. These declines have prompted the idea that aquaculture may serve as a means of satisfying consumer demands and decreasing pressure on wild stocks. While culture programs exist for walleye, little is known about the growth physiology of walleye in a culture system. The goals of this thesis, therefore, were to develop a molecular marker that could be used to rapidly assess growth in juvenile walleye, and to make improvements to culture practices that will optimize growth. To begin, we examined the relationship between growth and the expression of the myosin heavy chain gene (MyHC) in the white muscle of juvenile walleye. The coding region of MyHC from the fast skeletal muscle of walleye was amplified using a full length cDNA. Growth was then characterized using traditional measurements of growth (length, weight and condition factor), as well as MyHC protein concentration and MyHC mRNA levels. Both MyHC mRNA and protein expression were highly correlated with faster growth in juvenile walleye. Over shorter time scales, the MyHC mRNA marker was sensitive enough to detect impacts of fasting that could not be detected using traditional measurements of growth. Next, MyHC mRNA quantification was applied to an aquaculture setting. Feed training is an important bottleneck during juvenile walleye culture that often leads to mortalities and cannibalism. These experiments showed that the brief fasting period during the diet switch from plankton to commercial pellet feed caused a significant decrease in MyHC mRNA levels. Furthermore, the success of feed training in terms of survivorship and growth potential increased significantly for larger fish. The final section of this thesis examined how acute and chronic temperature exposure impacted MyHC mRNA and protein expression. Results showed that the nature of the heat stress can significantly affect the MyHC response. These findings are important as the temperature stresses induced in these studies are common during the summer months in southern Ontario. / Thesis (Ph.D, Biology) -- Queen's University, 2009-02-19 12:30:51.406
2

Transcription factors regulating the immunoglobulin heavy chain locus /

Andersson, Tove, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 4 uppsatser.
3

The mechanisms of antibody generation in the llama

Woolven, Ben January 2000 (has links)
No description available.
4

Immunological and biological significance of the alternative interaction between immunoglobulins and protein A from staphylococcus aureus

Inganäs, Mats. January 1981 (has links)
Thesis (doctoral)--Uppsala University, 1981. / Bibliography: p. 28-37.
5

TESTING THE MULTI-DYNEIN HYPOTHESIS BY MUTATING INNER ARM DYNEIN HEAVY CHAINS IN TETRAHYMENA THERMOPHILA

Liu, Siming 19 February 2004 (has links)
No description available.
6

The effects of congestive heart failure and functional overload on rat skeletal muscle

Spangenburg, Espen E. 18 July 2000 (has links)
Numerous references have suggested that alterations in exercise capacity during congestive heart failure (CHF) are not simply due to changes in myocardial function. In fact, recent evidence has indicated that reductions in skeletal muscle strength and endurance during CHF significantly impact exercise capacity of the CHF patient. Currently, it is believed that alterations in skeletal muscle phenotype, or more specifically a slow to fast transformation in phenotypic protein isoforms contribute to the reductions in muscle function. However, currently there are few data which directly document this slow to fast transformation of the skeletal muscle. Interestingly, it is well established that exercise training can cause changes in skeletal muscle phenotype, more specifically in the fast to slow direction. This is in direct contrast to what is known to occur during CHF. However, it is unclear if similar adaptations will result from training in a CHF patient. Also, it is not clear if the adaptations are due to alterations in the myocardium or changes directly imposed upon the muscle by the exercise training. Therefore, the purpose of this study was two-fold: 1) to clarify the changes in skeletal muscle myosin heavy chain (MHC) during CHF and 2) to determine if skeletal muscle can adapt to increased activity levels, utilizing functional overload (FO) without significantly improving cardiac function. In the first study the mixed plantaris muscles from rats afflicted with severe CHF demonstrated a significant (p<0.05) increase in fast MHC (e.g. IIb expression at the expense of IIx expression) compared to the control animal (SHAM). The mixed red gastrocnemius, regardless of the severity of CHF, exhibited significant (p<0.05) changes in all of the MHC isoforms. The slow soleus and fast white gastrocnemius did not display any significant changes in MHC expression. The changes in MHC isoform significantly correlated with indicators of disease severity, suggesting there may be an existing relationship between skeletal muscle MHC expression and alterations in myocardial function. In the second study, there were no differences exhibited between CHF and SHAM absolute or specific plantaris mass. There was a significant (p<0.05) 30% increase in both absolute and specific mass of the plantaris in the CHF-FO and SHAM-FO groups compared to the CHF and SHAM groups. There was a significant (p<0.05) 3.5% increase in slow MHC I expression and a significant (p<0.05) 6.5% decrease in fast MHC IIb expression in the CHF-FO group compared to the CHF group. In the SHAM-FO group, there was a significant (p<0.05) 4% increase in MHC I expression and a subsequent 8% decrease in fast MHC IIx+IIb in the SHAM-FO compared to the SHAM groups. There were no differences detected in the rates of Ca²⁺ uptake between the CHF-FO, SHAM, and SHAM-FO. However, Ca²⁺ uptake rates were significantly (p<0.05) elevated by 44% in the CHF group when compared to the other three groups. There were very few changes in plantaris SERCA 1 or 2 protein expression between the four groups. These data suggest that during CHF there are alterations in skeletal muscle isoform expression. However, at least some of the data suggest that changes in function are not always associated with changes in phenotype. Instead, it seems that the changes in Ca²⁺ handling may be due to an alteration in a regulatory mechanism. Also, the data indicate that skeletal muscle is adaptable to increases in activity levels without significantly altering myocardial morphology. / Ph. D.
7

Regulation of the immune response by IgM and IgG antibodies

Heyman, Birgitta. January 1983 (has links)
Thesis (doctoral)--Uppsala University, 1983. / Includes bibliographical references (p. 48-51).
8

Fiber Type-specific Desmin Content in Human Single Muscle Fibers

Ghent, Heidi 23 March 2006 (has links) (PDF)
Contractile and cytoskeletal protein concentrations have been shown to differ on the basis of fiber type in whole muscle homogenates. The purpose of this study was to compare the content of the intermediate filament protein, desmin, between type I and type IIa single muscle fibers from a mixed muscle in human subjects. Biopsies were taken from the vastus lateralis of six recreationally active males. Approximately 150 single muscle fibers were dissected from each sample and analyzed using SDS-PAGE to determine myosin heavy chain (MHC) composition. Following identification, muscle fibers were pooled into two groups (MHC I and MHC IIa). Desmin and actin content within the pooled samples was determined via immunoblotting. On average, muscle samples were composed of 51 ± 7 % type I, 2 ± 1% type I/IIa, 27 ± 5% type IIa, 19 ± 4% type IIa/IIx and 1 ± 1% type IIx MHC single fibers. Desmin and actin contents were 40% and 34% higher in type I fibers compared to type IIa fibers, respectively (P < 0.05). However the desmin to actin ratio was similar between pooled type I and IIa single muscle fibers within the vastus lateralis. These data suggest that desmin and actin content is a function of muscle fiber type. These differences in cytoskeletal protein content may have implications for differences in contractile function and eccentric damage characteristics between fiber types.
9

Convergent transcription of the myosin heavy chain gene (Mhc) and transcriptional unit at chromosomal locus 36B (TU-36B) in Drosophila

Croniger, Colleen Marie January 1992 (has links)
No description available.
10

Skeletal muscle adaptations in cachectic, tumor-bearing rats

Otis, Jeffrey Scott 09 April 2003 (has links)
Cancer cachexia is a debilitating, paraneoplastic syndrome commonly associated with late stage malignancy. It is estimated that ~25% of cancer-related deaths are due directly to complications arising from cachexia (Barton, 2001). Cachexia manifests as severe body wasting, primarily due to the loss of skeletal muscle mass. This study tested the hypothesis that muscle atrophy associated with cancer cachexia could be attenuated by using a unilateral, functional overload (FO) model applied concurrently with tumor development. To accomplish this, Morris hepatoma MH-7777 cells were implanted in adult female, Buffalo rats (n = 12) and allowed to incubate for 6 weeks. FO surgeries (n = 12) were performed five days prior to MH-7777 cell implantation. Over the course of six weeks, healthy, age, sex and strain-matched, vehicle-injected rats (n = 12) gained ~5% of body weight compared to tumor-bearing rats that lost ~6% of body weight when adjusted for tumor mass. Tumor-bearing animals experienced significant atrophy to gastrocnemius, tibialis anterior, extensor digitorum longus, plantaris and diaphragm muscles. FO successfully reversed plantaris muscle atrophy in cachectic, tumor-bearing rats (n=5). FO plantaris masses were ~24% larger than contralateral controls. However, this hypertrophic response was not as great as FO plantaris muscles from healthy, sham-operated controls (~44% larger than contralateral controls, n=5). FO plantaris muscles from tumor-bearing rats had ~1.5 fold increase in myonuclei/fiber ratios compared those of sham-operated, tumor-bearing controls (n = 6). Therefore, cancer cachexia did not prevent myonuclear accretion necessary for skeletal muscle hypertrophy. Little data exists on adaptations to myosin heavy chain (MHC) isoforms in cachectic skeletal muscle. Plantaris muscles from tumor-bearing rats displayed decreased percentages of MHC type I compared to plantaris muscles from vehicle-injected controls (7% vs. 3%, respectively). However, FO plantaris muscles from tumor-bearing rats had an increased percentage of MHC type I and decreased percentage of MHC type IIb compared to sham-operated tumor-bearing rats, adaptations commonly seen in trained muscles. Therefore, cancer cachexia did not prevent the capability of skeletal muscle to respond normally to hypertrophic stimuli. This study also attempted to characterize a mechanism responsible for the hypertrophic response, increased myonuclei/fiber ratio and transition toward a slower MHC profile in FO plantaris muscles from tumor-bearing rats. Recently, the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, has been suggested as a critical factor regulating skeletal muscle growth and fiber-type dependent gene expression (Chin, 1998; Wu, 2000; Olson, 2000; Otis, 2001). The protein content of the catalytic subunit (CaNa) and the regulatory subunit (CaNb) of calcineurin were unchanged in plantaris muscles from tumor-bearing animals compared to healthy controls. Furthermore, total and specific (normalized to CaNa protein content) calcineurin phosphatase activity were not altered in any group. Therefore, calcineurin activity did not appear to be associated with the regulation of the morphological and physiological response of hypertrophying plantaris muscles in cachectic, tumor-bearing rats. Overall, this study indicated that atrophied plantaris muscles from tumor-bearing animals have a reduced capacity to hypertrophy potentially due to a decreased myonuclei/fiber ratio. Furthermore, it is unlikely that changes to mass and MHC isoform expression are associated with calcineurin phosphatase activity. / Ph. D.

Page generated in 0.0675 seconds