• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel properties of ferromagnetic p-wave superconductors

Lorscher, Christopher 01 January 2014 (has links)
This thesis investigates the many extraordinary physical properties of the candidate p-wave ferromagnetic superconductors UCoGe and URhGe, and proposes theoretical predictions for p-wave superconductors yet to be discovered. In particular, we carry out angular dependent quantum field theoretical calculations of the thermodynamic H - T phase diagram known as the upper critical field, or more appropriately for ferromagnetic superconductors the upper critical induction, for various p-wave superconducting order parameter symmetries including: The axial Anderson-Brinkman-Morel(ABM) state, the chiral Scharnberg-Klemm (SK) state, and the completely broken symmetry polar state (CBS), as well as for some other states with partially broken symmetry (PBS) superconducting order parameter symmetries. The most notable contribution of the work presented in this thesis is the application of the Klemm-Clem transformations to analytically calculate the full angular and temperature dependencies of the upper critical field for orthorhombic materials, which may prove to be useful to experimentalists in identifying these exotic states of matter experimentally. Second, this work formulates a double spin-split ellipsoidal Fermi surface (FS) model for ferromagnetic superconductors in the normal state, which introduces a field dependence to the effective mass in one crystallographic direction on the dominant Fermi surface and to the chemical potential, and is subsequently applied to the normal state of URhGe to explain theoretically the anomalous specific heat data of Aoki and Flouquet. Extension of this work to understanding the still elusive reentrant high-field superconducting phase of URhGe and the S-shaped upper critical field curve for external magnetic field parallel to the b-axis direction inUCoGe is discussed. Third, this work also presents theoretical fits to the upper critical field data of Kittika et al. for Sr2RuO4 using the helical p-wave states and including Pauli limiting effects of the three components of the triplet pair-spin fixed to the highly conducting layers by strong spin-orbit coupling.
2

Low-dimensional electron systems studied by angle- and spin-resolved photoemission spectroscopy / Systèmes électroniques de basse dimensionnalité étudiés par spectroscopie de photoémission résolue en angle et en spin

Dai, Ji 09 October 2019 (has links)
Les matériaux dans lesquels des interactions à plusieurs particules, un confinement de faible dimension et/ou un fort couplage spin-orbite sont présents témoignent d’une grande variété de phénomènes, mais sont encore mal compris. Des informations essentielles sur l’origine de tels phénomènes peuvent être obtenues en mesurant leur structure électronique. Cette thèse présente une étude expérimentale de la structure électronique de matériaux de faible dimension et/ou fortement corrélés présentant un intérêt fondamental actuel, en utilisant la spectroscopie par photoémission résolue en angle et en spin (ARPES et SARPES).Dans la partie introductive, je présente mon travail sur deux exemples de type "livre de texte", mais innovants, montrant comment les interactions affectent la structure de bande d'un matériau: le couplage des électrons avec des phonons dans une distribution de Debye dans un système électronique à deux dimensions (2DES) dans ZnO, semi-conducteur à oxyde à bande interdite large utilisé dans les applications photovoltaïques, et le dédoublement induit par un fort couplage spin-orbite (SOC) dans la bande de valence du ZnTe, un autre semi-conducteur important utilisé dans les dispositifs optoélectroniques. Ensuite, dans la suite de cette thèse, je discute de mes résultats originaux dans trois systèmes différents de basse dimensionnalité et d'intérêt actuel en recherche : 1.La réalisation d'un 2DES à la surface (110) de SnO₂, le premier du genre dans une structure rutile. L'ajustabilité de la densité de ses porteurs au moyen de la température ou du dépôt d'Eu, et la robustesse vis-à-vis les reconstructions de surface et l'exposition aux conditions ambiantes rendent ce 2DES prometteur pour les applications. Au moyen d'une simple réaction redox à la surface, ces travaux ont prouvé que les lacunes en oxygène pouvaient doper la bande de conduction à la surface de SnO₂, résolvant ainsi un problème longtemps débattu concernant le rôle desdites lacunes dans le dopage de type n dans SnO₂. 2.L'étude des états de surface topologiques dans M₂Te₂X (avec M = Hf, Zr ou Ti; et X = P ou As), une nouvelle famille de métaux topologiques en trois dimensions, provenant du SOC et étant protégés par la symétrie du renversement du temps. Leur structure électronique et leur texture de spin, étudiées par ARPES et SARPES, révèlent la présence de fermions de Dirac sans masse donnant naissance à des arcs de nœuds de Dirac. 3.L'étude du matériau YbNi₄P₂ à fermions lourds quasi unidimensionnel, qui présente une transition de phase quantique de second ordre d’une phase ferromagnétique à une phase paramagnétique de liquide de Fermi lors de la substitution partielle du phosphore par l'arséniure. Une telle transition ne devrait se produire que dans les systèmes zéro ou unidimensionnels, mais la mesure directe de la structure électronique des matériaux ferromagnétiques quantiques critiques faisait jusqu'à présent défaut. Grâce à une préparation et nettoyage méticuleux in situ de la surface des monocristaux YbNi₄P₂, qui sont impossibles à cliver, leur structure électronique a été mesurée avec succès au moyen de l'ARPES, dévoilant ainsi le caractère quasi-1D, nécessaire à la compréhension de la criticité quantique ferromagnétique, dans YbNi₄P₂. Le protocole utilisé pour rendre ce matériau accessible à l'ARPES peut être facilement généralisé à d'autres matériaux exotiques dépourvus de plan de clivage. / Materials in which many-body interactions, low-dimensional confinement, and/or strong spin-orbit coupling are present show a rich variety of phenomena, but are still poorly understood. Essential information about the origin of such phenomena can be obtained by measuring their electronic structure. This thesis presents an experimental study of the electronic structure of some low-dimensional and/or strongly correlated materials of current fundamental interest, using angle- and spin-resolved photoemission spectroscopy (ARPES and SARPES). In the introductory part, I present my work on two innovative textbook examples showing how interactions affect the band structure of a material: the coupling of electrons with phonons in a Debye distribution in a two-dimensional electron system (2DES) in ZnO, a wide-band-gap oxide semiconductor used in photovoltaic applications, and the splitting induced by strong spin-orbit coupling (SOC) in the bulk valence band of ZnTe, another important semiconductor used in optoelectronic devices. Then, in the rest of this thesis, I discuss my original results in three different low-dimensional systems of current interest: 1.The realisation of a 2DES at the (110) surface of SnO₂, the first of its kind in a rutile structure. Tunability of its carrier density by means of temperature or Eu deposition and robustness against surface reconstructions and exposure to ambient conditions make this 2DES promising for applications. By means of a simple redox reaction on the surface, this work has proven that oxygen vacancies can dope the conduction band minimum at the surface of SnO₂, solving a long-debated issue about their role in n-type doping in SnO₂. 2.The study of topological surface states in M₂Te₂X (with M = Hf, Zr, or Ti; and X = P or As), a new family of three-dimensional topological metals, originating from SOC and being protected by time-reversal symmetry. Their electronic structure and spin texture, studied by ARPES and SARPES, reveal the presence of massless Dirac fermions giving rise to Dirac-node arcs. 3.The investigation of the quasi-one-dimensional heavy-fermion material YbNi₄P₂, which presents a second-order quantum phase transition from a ferromagnetic to a paramagnetic phase upon partial substitution of phosphorous by arsenide. Such a transition is expected to occur only in zero- or one-dimensional systems, but a direct measurement of the electronic structure of ferromagnetic quantum-critical materials was missing so far. By careful in-situ preparation and cleaning of the surface of YbNi₄P₂ single crystals, which are impossible to cleave, their electronic structure has been successfully measured by ARPES, thus effectively unveiling the quasi-one-dimensionality of YbNi₄P₂. Moreover, the protocol used to make this material accessible to ARPES can be readily generalised to other exotic materials lacking a cleavage plane.

Page generated in 0.1104 seconds