1 |
Assessing the potential and limitations of heavy oil upgrading by electron beam irradiationZhussupov, Daniyar 25 April 2007 (has links)
Radiation technology can economically overcome principal problems of heavy
oil processing arising from heavy oilâÂÂs unfavorable physical and chemical properties.
This technology promises to increase considerably yields of valuable and
environmentally satisfying products of thermal cracking; to simplify complexity of
refinery configuration; and to reduce energy expenses of thermal cracking.
Objectives of the present study are:
â Evaluate heavy oil viscosities with respect to absorbed dose and effect of
different solvents on the viscosity of irradiated crude oil by comparing selected
physical properties of irradiated samples to a non-irradiated control group;
â Investigate effect of e-beam radiation on the yields of light fractions comparing
yields of radiation-thermal cracking to yields of conventional thermal cracking.
The viscosity was used as an indicator of the change in the molecular structure of
hydrocarbons upon irradiation. We found that the irradiation of pure oil leads to the
increase of the molecular weight calculated from the Riazi-Daubert correlation. Thus,
irradiation up to 10 kGy resulted in a 1.64% increase in the molecular weight, 20 kGy âÂÂ
4.35% and 30 kGy â 3.28%.
It was found that if irradiated oil was stored for 17 days, its viscosity increased
by 14% on average. The irradiation of samples with added organic solvent in the
following weight percentages 10, 5, 2.5wt.% resulted in the increase in the viscosity by
3.3, 3.6 and 14.5%, respectively. The irradiation of the sample with added distilled water also resulted in an increase in the viscosity. This increase mainly happened because the
thermal component was absent in the activation energy and hydrogen, produced from
radiolysis of solvent and water molecules in mixture with crude oil, and was not
consumed by hydrocarbon molecules and no reduction in molecular size occurred.
Implementation of radiation to the thermal cracking increased yields of light
fractions by 35wt.% on average compared to the process where no radiation was present.
The last chapter of this thesis discusses a profitability of installation the
hypothetical radiation-thermal visbreaking unit. The calculation of profitability was
performed by a rate of return on investment (ROI) method. It showed that
implementation of radiation-thermal processing resulted in an increase of ROI from 16
to 60%.
|
2 |
Solubility Modeling of Athabasca Vacuum ResidueZargarzadeh, Maryam Unknown Date
No description available.
|
3 |
Solubility Modeling of Athabasca Vacuum ResidueZargarzadeh, Maryam 11 1900 (has links)
The solubility parameters for ten fractions of Athabasca vacuum residue were calculated from molecular representations via group additivity methods. Two methods were used; Marrero-Gani and Fedors. The calculated parameters were compared between the fractions for consistency, and also compared with other literature sources. The results from the Marrero-Gani method were satisfactory in that the values were in the expected range and the results were consistent from fraction to fraction. The final stage of the work on group additivities was to estimate the solubility parameter values at the extraction temperature of 473 K, and then compare the solutes to the solvents. The solubility parameters of the solvents were calculated from correlations and from the molecular dynamic simulation; the latter method did not result in fulfilling values. The most reasonable solvent and solute solubility parameters were used to assess the utility of the solubility models to explain the trends. The solubility models were not suitable for these types of materials. Stability of heavy oil fractions undergoing mild thermal reactions were predicted computationally for limited sample cracked molecules.
|
Page generated in 0.0723 seconds