• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Many server queueing models with heterogeneous servers and parameter uncertainty with customer contact centre applications

Qin, Wenyi January 2018 (has links)
In this thesis, we study the queueing systems with heterogeneous servers and service rate uncertainty under the Halfin-Whitt heavy traffic regime. First, we analyse many server queues with abandonments when service rates are i.i.d. random variables. We derive a diffusion approximation using a novel method. The diffusion has a random drift, and hence depending on the realisations of service rates, the system can be in Quality Driven (QD), Efficiency Driven (ED) or Quality-Efficiency-Driven (QED) regime. When the system is under QD or QED regime, the abandonments are negligible in the fluid limit, but when it is under ED regime, the probability of abandonment will converge to a non-zero value. We then analyse the optimal staffing levels to balance holding costs with staffing costs combining these three regimes. We also analyse how the variance of service rates influence abandonment rate. Next, we focus on the state space collapse (SSC) phenomenon. We prove that under some assumptions, the system process will collapse to a lower dimensional process without losing essential information. We first formulate a general method to prove SSC results inside pools for heavy traffic systems using the hydrodynamic limit idea. Then we work on the SSC in multi-class queueing networks under the Halfin-Whitt heavy traffic when service rates are i.i.d. random variables within pools. For such systems, exact analysis provides limited insight on the general properties. Alternatively, asymptotic analysis by diffusion approximation proves to be effective. Further, limit theorems, which state the diffusively scaled system process weakly converges to a diffusion process, are usually the central part in such asymptotic analysis. The SSC result is key to proving such a limit. We conclude by giving examples on how SSC is applied to the analysis of systems.
2

Steady State Analysis of Load Balancing Algorithms in the Heavy Traffic Regime

January 2019 (has links)
abstract: This dissertation studies load balancing algorithms for many-server systems (with N servers) and focuses on the steady-state performance of load balancing algorithms in the heavy traffic regime. The framework of Stein’s method and (iterative) state-space collapse (SSC) are used to analyze three load balancing systems: 1) load balancing in the Sub-Halfin-Whitt regime with exponential service time; 2) load balancing in the Beyond-Halfin-Whitt regime with exponential service time; 3) load balancing in the Sub-Halfin-Whitt regime with Coxian-2 service time. When in the Sub-Halfin-Whitt regime, the sufficient conditions are established such that any load balancing algorithm that satisfies the conditions have both asymptotic zero waiting time and zero waiting probability. Furthermore, the number of servers with more than one jobs is o(1), in other words, the system collapses to a one-dimensional space. The result is proven using Stein’s method and state space collapse (SSC), which are powerful mathematical tools for steady-state analysis of load balancing algorithms. The second system is in even “heavier” traffic regime, and an iterative refined procedure is proposed to obtain the steady-state metrics. Again, asymptotic zero delay and waiting are established for a set of load balancing algorithms. Different from the first system, the system collapses to a two-dimensional state-space instead of one-dimensional state-space. The third system is more challenging because of “non-monotonicity” with Coxian-2 service time, and an iterative state space collapse is proposed to tackle the “non-monotonicity” challenge. For these three systems, a set of load balancing algorithms is established, respectively, under which the probability that an incoming job is routed to an idle server is one asymptotically at steady-state. The set of load balancing algorithms includes join-the-shortest-queue (JSQ), idle-one-first(I1F), join-the-idle-queue (JIQ), and power-of-d-choices (Pod) with a carefully-chosen d. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019

Page generated in 0.0569 seconds