• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on Asymptotic Analysis of GI/G/1-type Markov Chains / GI/G/1型マルコフ連鎖の漸近解析に関する研究

Kimura, Tatsuaki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20517号 / 情博第645号 / 新制||情||111(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 髙橋 豊, 教授 太田 快人, 教授 大塚 敏之, 准教授 増山 博之 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
2

Many-server queues with customer abandonment

He, Shuangchi 05 July 2011 (has links)
Customer call centers with hundreds of agents working in parallel are ubiquitous in many industries. These systems have a large amount of daily traffic that is stochastic in nature. It becomes more and more difficult to manage a call center because of its increasingly large scale and the stochastic variability in arrival and service processes. In call center operations, customer abandonment is a key factor and may significantly impact the system performance. It must be modeled explicitly in order for an operational model to be relevant for decision making. In this thesis, a large-scale call center is modeled as a queue with many parallel servers. To model the customer abandonment, each customer is assigned a patience time. When his waiting time for service exceeds his patience time, a customer abandons the system without service. We develop analytical and numerical tools for analyzing such a queue. We first study a sequence of G/G/n+GI queues, where the customer patience times are independent and identically distributed (iid) following a general distribution. The focus is the abandonment and the queue length processes. We prove that under certain conditions, a deterministic relationship holds asymptotically in diffusion scaling between these two stochastic processes, as the number of servers goes to infinity. Next, we restrict the service time distribution to be a phase-type distribution with d phases. Using the aforementioned asymptotic relationship, we prove limit theorems for G/Ph/n+GI queues in the quality- and efficiency-driven (QED) regime. In particular, the limit process for the customer number in each phase is a d-dimensional piecewise Ornstein-Uhlenbeck (OU) process. Motivated by the diffusion limit process, we propose two approximate models for a GI/Ph/n+GI queue. In each model, a d-dimensional diffusion process is used to approximate the dynamics of the queue. These two models differ in how the patience time distribution is built into them. The first diffusion model uses the patience time density at zero and the second one uses the entire patience time distribution. We also develop a numerical algorithm to analyze these diffusion models. The algorithm solves the stationary distribution of each model. The computed stationary distribution is used to estimate the queue's performance. A crucial part of this algorithm is to choose an appropriate reference density that controls the convergence of the algorithm. We develop a systematic approach to constructing a reference density. With the proposed reference density, the algorithm is shown to converge quickly in numerical experiments. These experiments also show that the diffusion models are good approximations of queues with a moderate to large number of servers.
3

Limit order books, diffusion approximations and reflected SPDEs : from microscopic to macroscopic models

Newbury, James January 2016 (has links)
Motivated by a zero-intelligence approach, the aim of this thesis is to unify the microscopic (discrete price and volume), mesoscopic (discrete price and continuous volume) and macroscopic (continuous price and volume) frameworks of limit order books, with a view to providing a novel yet analytically tractable description of their behaviour in a high to ultra high-frequency setting. Starting with the canonical microscopic framework, the first part of the thesis examines the limiting behaviour of the order book process when order arrival and cancellation rates are sent to infinity and when volumes are considered to be of infinitesimal size. Mathematically speaking, this amounts to establishing the weak convergence of a discrete-space process to a mesoscopic diffusion limit. This step is initially carried out in a reduced-form context, in other words, by simply looking at the best bid and ask queues, before the procedure is extended to the whole book. This subsequently leads us to the second part of the thesis, which is devoted to the transition between mesoscopic and macroscopic models of limit order books, where the general idea is to send the tick size to zero, or equivalently, to consider infinitely many price levels. The macroscopic limit is then described in terms of reflected SPDEs which typically arise in stochastic interface models. Numerical applications are finally presented, notably via the simulation of the mesocopic and macroscopic limits, which can be used as market simulators for short-term price prediction or optimal execution strategies.

Page generated in 0.0553 seconds