• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 58
  • 25
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 196
  • 140
  • 58
  • 47
  • 44
  • 39
  • 34
  • 33
  • 30
  • 29
  • 26
  • 25
  • 22
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Estimating Upper Red Butte Watershed Contribution to Salt Lake Valley Water Resources

Limbu, Sal Bir 01 May 2019 (has links)
Water is crucial for domestic, agricultural, industrial, environmental, and hydropower uses. Once precipitation occurs, it eventually partitions into streamflow, evapotranspiration (ET), and groundwater recharge. Distribution of precipitation into these partitions is called a hydrologic budget. The hydrologic budget of any geographic area or watershed under different climate change conditions help water managers to make appropriate water management plans. Computer based hydrologic modeling software has been used extensively to solve many water resources problems including hydrologic budgets. Hydrologic modeling requires high quality weather parameter data. This study projected surface and groundwater flows from the portion of RBC watershed that lies above Red Butte Reservoir (RBR) to Salt Lake Valley (SLV) for water years (WYs) 2051-2060 in two climatic Representative Concentration Pathways (RCPs) scenarios, RCP 4.5 and RCP 8.5. RCP 8.5 corresponds to the pathways with higher greenhouse gas emission than RCP 4.5. To project flows, we first used Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) 4.3 model to calibrate and validate the observed streamflow for WYs 2016 and 2017 respectively. However, within RBC study area weather stations, all three weather parameters (Precipitation (P), Temperature (T), and Net Radiation (NR)) required for HEC-HMS model were missing on the same day for some periods of WYs 2016-2017. This necessitated to fill the missing parameters prior to the model calibration and validation. We hypothesized that systematically using ANN and SMs would enable making accurate estimates, even when multiple parameter values are missing on the same day. The hypothesis-estimated the missing weather parameters (P, T, and NR) values are useful for hydrologic modeling in a watershed. We ran the HEC-HMS validated model for WY 2051-2060 once for each RCP scenario, and quantified the flows to SLV. The model results showed that average stream and groundwater flows of WYs 2016 and 2017 were 14.1% and 55.7% of total study area precipitation, respectively. In the future 2051- 2060, compared with average annual surface and groundwater flows of WYs 2016-2017, percent changes in flows, respectively, were i) decreases of 29.6% and 24.2% for RCP 4.5 and ii) decreases of 26% and 23.9 % for RCP 8.5.
32

A Feasibility Study On Bridge Scour Countermeasures

Ozdemir, Emre Celalettin 01 January 2003 (has links) (PDF)
Many bridges are destroyed or completely failed during floods due to excessive scouring around bridge piers and abutments. Safe bridge design is based on joint consideration of structural, hydraulic, and geotechnical aspects. This study is concerned with the investigation of various types of countermeasures against scouring at bridge sites. The design criteria for various countermeasures are reviewed in terms of hydraulic, hydrologic, constructional, and economical requirements. (Conditions of applicability of these countermeasures are evaluated and designed for different return periods of flow, and hydroeconomic analyses are performed for Esenbosa Bridge). Based on the evaluation of the results of hydroeconomic analyses, combinations of rock riprap and grout filled bags are found to be appropriate measures for piers and abutments against scouring whereas vegetation is observed to be applicable for bank protection.
33

Studie návrhu záplavového území na vybraném vodním toku Hodonínska

Kováčová, Barbora January 2014 (has links)
The diploma thesis deals with the proposal of flooded area on selected section 23,324-28,521 km of the Kyjovka river. Part of the thesis is about general issue of floods and flooded areas. In the practical part, the flooded area of the selected section of the Kyjovka river, with the help of AutoCAD and HEC-RAS programs, is designed. As a source for the proposal of flooded area served the data from The Morava River basin. The thesis is complemented by graphic attachment, photo documentation and drawings.
34

Návrh revitalizace horního toku Svratky cca km 8,00 - 9,00

Held, Martin January 2015 (has links)
This thesis deals with the study of revitalization measures on upstream of the Svratka River, specifically near the village Herálec. The thesis also contains information about locality, bioregion and basin of Svratka River The main part of the paper examines the modified section Svratka. The goal of this work is to evaluate the current situation and then propose measures that would lead to the revitalization of Svratka River. When drafting work was also used hydrological program HEC-RAS and ATLAS DMT
35

Určení záplavového území a posouzení vodohospodářských objektů na vybraném úseku vodního toku Lužická Nisa / Determining floodplains and assessment of water facilities in the selected section of the watercourse Lužická Nisa

Lišková, Karolína January 2016 (has links)
This master thesis focus on determinig the flooding inundation of the selected area of Luzicka Nisa, flowing through the city Hradek nad Nisou. The work is based on the field survey and the information about the area, on this basis it describes the watched area in interaction for determing the flooding inundation. The thesis is split into the text summary and determing the flooding inundation of the selected part of the river Luzicka Nisa. The text summary sums up the problematic of flooding. It mentions the history, the prevention against flooding, the factors influencing their formation. The flood stages, the flooding inundation and the flood control plans. The second part focus on the determining the flooding inundation at the N year flows by using of the program HEC RAS 4.0 and the ArcGIS extension HEC-GeoRAS. The determined flooding inundation was modeled on the basis of the data of cross profiles, N year flows and water facilities and then exported on map data.
36

Zhodnocení odtokových poměrů v povodí vodního toku Jeptiška / Evaluation of runoff conditions in the catchment area of the Jeptiška stream

Satrapová, Barbora January 2016 (has links)
My final thesis are focused on the field of flood protection and hydrodynamical modelling for the drainage area of the Jeptiška creek. The aim of my work is the evaluation of the status of the part of the watercourse (Jeptiška Creek between river km 0,0-2,5), the evaluation how hydraulic structures influence the streem and the analysis of foodplain areas for the selected floods. Floodplain areas and flood hazard areas are, as result of former steps, determined in Městec Králové. The hydrodynamical model (using HEC-RAS model application) is compiled, flood plain areas are docomented using GIS.
37

Aplikace matematických modelů pro simulaci hydrologických poměrů na vybraných vodních tocích / Application of mathematical models for simulation of hydrological conditions in selected streams

Kurková, Marie January 2015 (has links)
Flood is a natural phenomenon that occurs at different intensities and irregular time intervals. As to natural disasters, floods represent the greatest direct threat for the Czech Republic. They may cause serious critical situations during which not only extensive material damages are done, but may bring also losses of the lives of inhabitants in affected areas as well as vast devastation of cultural landscape including environmental damages. Important from the viewpoint of the elimination of potential threats and consequences of such events is the information issued by flood forecasting service about the character and size of flood areas for individual N-year flood discharges and specific flood scenarios. An adequate image of depths and flow rates in the longitudinal or cross profile of the watercourse during a flood event is provided by the hydrodynamic model. This is why the information obtained from the hydrodynamic models occupies a privileged position from the viewpoint of the protection of citizens' lives and mitigation of damage to their property. The first study is situated on the river Úhlava in meadows by Příchovice near the town Přeštice. The proposal of flood-protection measures is contained in Territorial control documentation. The documentation was elaborated on the basis of hydraulic calculations and experiences from the flood in August 2002. The mathematical model is practically used in the study of analysis of proposed flood-protection measures. The analysis is based on mathematical simulation of water outflow and water level on the river Úhlava. It is possible to use the non-commercial software Hec-Ras, version 3.1.1., for the simulation itself. One of the points of view of the possibility of using proposed flood-protection measures is total efficiency. The mathematical model is posssible to use as a basis of support for realization of proposed flood-protection measures on the river Úhlava in meadows by Příchovice within the grant programme "Program prevence před povodněmi II" under the control of the Ministry of Agriculture. In the second case the mathematical model is practically used in the study of hydrotechnical analysis of streams in cadastral unit. The analysis is based on matjematical simulation of water outflow and water level on chosen streams. It is possible to use the noncomercial software HEC-RAS for the own simulation. The analysis should be shown on dangerous places in the interest place. The mathematical model is possible of using to use as basis for revaluation of action in spatial plan or for view of the flood-protection measures in the village Mochtín. Basic input into the hydrodynamic models is represented by altimetry data. One of ways to obtain such data is through the method of aerial laser scanning (ALS) from the digital relief model (DRM). This method is considered one of the most accurate methods for obtaining altimetry data. Its bottleneck is however incapacity of recording terrain geometry under water surface due to the fact that laser beam is absorbed by water mass. The absence of geometric data on watercourse discharge area may perceptibly affect results of modelling, especially if a missing part of the channel represents a significant discharge area with its capacity. One of methods for eliminating the deficiency is a sufficient channel recess by means of software tools such as CroSolver. The third submitted paper deals with the construction of a hydrodynamic model using 5th generation DRM data, and compares outputs from this model at various discharges with a model based on the altimetry data modified by using the CroSolver tool. Outputs from the two hydrodynamic models are compared in HEC-RAS programme with the use of recessed data and with the use of unmodified DRM. The comparison is done on the sections of two watercourses with different terrain morphology and watercourse size. A complementary output is the comparison of inundation areas issuing from both model variants. Our results indicate that differences in the outputs are significant namely in the lower discharges (Q1, Q5) whereas for Q50 and Q100 the difference is negligible with a great role being played by morphology of the modelled area and by the watercourse size.
38

USING HAZUS-MH TO CALCULATE EXPECTED ANNUAL DAMAGE FOR FLOODPLAIN-MANAGEMENT SCENARIOS ALONG THE MIDDLE MISSISSIPPI RIVER

Dierauer, Jennifer Renee 01 May 2011 (has links)
This study combined flood-frequency analysis, 1-D (one-dimensional) hydraulic modeling using HEC-RAS, and flood-loss modeling using FEMA's Hazus-MH (Hazards U.S. Multi-Hazard) in order to: 1) quantify how different flood-frequency methodologies affect flood-risk assessments, and 2) quantify the impacts of different floodplain-management scenarios along the Middle Mississippi River (MMR). The nine scenarios tested here included various combinations of flood-frequency methodology, buyouts, and levee configurations. The levee configurations analyzed included: 1) current levee configuration, 2) no levees, 3) a 1500 m levee setback, 4) a 1000 m levee setback, and 5) a customized levee setback designed to maximize protection around existing infrastructure. Two study reaches were chosen: (1) an Urban Study Reach within St. Clair and northern Monroe Counties, IL, with levees designed to withstand the 500-year flood and (2) an Agricultural Study Reach within Union and Jackson Counties, IL, with <100-year levees. A flood-frequency analysis was completed for the St. Louis, MO gauging station, and detailed building inventories were used to estimate flood losses on a structure-by-structure basis (Hazus-MH UDF analysis) for an array of floods ranging from the 2- to the 500-year events. These flood-loss estimates were combined with a stochastic levee-failure model. Finally, estimated flood damages from Hazus-MH were integrated across the full range of flood recurrences in order to calculate expected annual damage (EAD). This study's flood-frequency analysis and corresponding flood-loss assessment demonstrate how differences in flood-frequency methodology can significantly impact flood-risk assessments. EAD based on the UMRSFFS (Upper Mississippi River System Flow Frequency Study) flood frequencies was 68% ($45.4 million) lower than EAD based on this study's flood frequencies. This decrease in EAD demonstrates that the UMRSFFS flood frequencies and corresponding stages may significantly underestimate flood risk within the Urban Study Reach. The 100-year discharge in the UMRSFFS appears to be underestimated by an estimated 17% (187,000 cfs), resulting in a 10% (1.6 m) underestimation of the 100-year flood level. Given the magnitude of the EAD, discharge, and stage differences documented here, a reanalysis of the MMR flood frequencies, flood profiles, and flood maps should be considered. The hydraulic modeling completed here showed that levee setbacks and levee removal successfully reduce stages for all recurrence intervals. For the 100-year flood, average reductions ranged from 0.20 m for a 1000 m levee setback to 1.61 m with levees removed. In general, stage reductions increased with increasing discharge and with increasing setback distance. The flood-level reductions are attributed to increased floodwater storage and conveyance across the reconnected floodplain. Compared to the current conditions, the levee setback and levee removal scenarios tested here reduced flood losses for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The 1000 m and 1500 m levee setbacks required buyouts in order to reduce EAD; however, a levee setback carefully planned around existing high-value structures reduced EAD with or without buyouts. The planned levee setback configuration combined with buyouts resulted in the largest decreases in EAD: a $16.8 million (55%) decrease in the Urban Study Reach and an $8.3 million (93%) decrease in the Agricultural Study Reach. Overall, this project showed that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reaches and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. Potentially, this type of planned levee configuration could be used as a template for the replacement of aging or failing levee systems.
39

Developing Sediment Transport and Deposition Prediction Model of Lower Ohio River near the Olmsted Locks and Dam Area

Ghimire, Ganesh Raj 01 August 2016 (has links)
The present study focuses on the sediment deposition and consequent dredging issues in Lower Ohio River at the Olmsted Locks and Dam area-River mile (RM)-964.4 during the ongoing in-the-wet construction methodology. The study reach is between Locks and Dam 53 (RM 962.6) at upstream, and RM 970 at downstream. One dimensional (1-D) HEC-RAS numerical modeling in conjunction with Arc-GIS was employed. Stream flow measurements, velocity, incoming sediment concentration, bed gradation, and annual hydrographic survey data acquired from public archives of USGS and USACE Louisville District were used as inputs. The model was subjected to the 1-D quasi-unsteady and completely unsteady sediment transport module, available in the latest HEC-RAS 5.0 Beta release. Calibration and validation of the hydrodynamic and sediment models were performed using measured water surface elevation, velocity, and sediment loads at measured sections. Post-model calibration and validation, deposition to excavated cross-sections for future dam shells at Olmsted was predicted, which warrants dredging. The study attempted to analyze the sediment transport trend with the focus on depositionat Olmsted Locks and Dam area using the sensitivity analysis approach of transport capacity functions. Moreover, the capability of 1-D HEC-RAS quasi-unsteady and completely unsteady models were assessed in prediction of sediment deposition in the construction area (dam shells excavation area). A temporal deposition prediction model was developed that can potentially replace the current ad-hoc approach used to determine the dredging schedule. Likewise, a representative environmental risk associated with sedimentation in the study area was examined. The model can potentially be used as a decision support tool to analyze the long term impact of sedimentation in the vicinity of Olmsted Locks and Dam if further updates on the river bathymetry, and specific field data are supplemented to the model.
40

ANALYZING THE EFFECTS OF CLIMATE CHANGE ON URBAN STORMWATER INFRASTUCTURES

Thakali, Ranjeet 01 May 2017 (has links)
The change in the hydrological cycle due to climate change entails more frequent and intense rainfall. As a result, urban water systems will be disproportionately affected by the climate change, especially in such urban areas as Las Vegas, which concentrates its population, infrastructure, and economic activity. Understanding the proper management of urban stormwater in the changing climate is becoming a critical concern to the water resources managers. Proper design and management of stormwater facilities are needed to attenuate the severe effects of extreme rainfall events. In an effort to develop better management techniques and understanding the probable future scenario, this study used the high-resolution climate model data conjunction with advanced statistical methods and computer simulation. Las Vegas Valley which has unique climatic condition and is surrounded by the mountains in every direction was chosen for the study. The North American Regional Climate Change Assessment Program is developing multiple high-resolution projected-climate data from different combinations of regional climate models and global climate models. First, the future design depths was calculated using generalized extreme value method with the aid of L-moment regionalization technique. The projected climate change was incorporated into the model at the 100 year return period with 6h duration depths. Calculation showed that, the projection from different sets of climate model combinations varied substantially. Gridded reanalysis data were used to assess the performance of the climate models. This study used an existing Hydrologic Engineering Center’s Hydrological Modeling System (HEC-HMS) model and Storm Water Management Model (SWMM) developed by the Environmental Protection Agency (EPA) were implemented in the hydrological simulation. Hydrological simulation using HEC-HMS showed exceedances of existing stormwater facilities that were designed under the assumption of stationarity design depth. Low Impact Developments such as permeable pavement and green roof were found to be effective in the attenuation of climate change induced excess surface runoff. The primary purpose of this study is understanding of proper designing, planning and management of the urban stormwater system in the predicted climate scenarios.

Page generated in 0.0294 seconds